Ubuntu 法兰匹配器开口CV 3-最小最大距离

Ubuntu 法兰匹配器开口CV 3-最小最大距离,ubuntu,opencv3.0,orb,flann,Ubuntu,Opencv3.0,Orb,Flann,我有一些代码,它使用Flann matcher和ORB检测器来查找两幅人物图像之间的特征。我在ubuntu上使用opencv 3。我有一些疑问。。 代码如下: #include <iostream> #include </home/sruthi/opencv/include/opencv2/opencv.hpp> using namespace cv; //void readme(); /** @function main */ int main(int arg

我有一些代码,它使用Flann matcher和ORB检测器来查找两幅人物图像之间的特征。我在ubuntu上使用opencv 3。我有一些疑问。。 代码如下:

  #include <iostream>
#include </home/sruthi/opencv/include/opencv2/opencv.hpp>

using namespace cv;

//void readme();

/** @function main */
int main(int argc, char** argv)
{
   if( argc != 3 )
  { //readme(); 
     return -1; }

  Mat img_object = imread( argv[1], IMREAD_GRAYSCALE );
  Mat img_scene = imread( argv[2], IMREAD_GRAYSCALE );


    if (!img_object.data || !img_scene.data)
    {
        std::cout << " --(!) Error reading images " << std::endl; return -1;
    }

    //-- Step 1: Detect the keypoints using ORB Detector
    Ptr<FeatureDetector> detector = ORB::create();

    std::vector<KeyPoint> keypoints_object, keypoints_scene;

    detector->detect(img_object, keypoints_object);
    detector->detect(img_scene, keypoints_scene);

    //-- Step 2: Calculate descriptors (feature vectors)
    Ptr<DescriptorExtractor> extractor = ORB::create();

    Mat descriptors_object, descriptors_scene;

    extractor->compute(img_object, keypoints_object, descriptors_object);
    extractor->compute(img_scene, keypoints_scene, descriptors_scene);

    descriptors_object.convertTo(descriptors_object,CV_32F);
    descriptors_scene.convertTo(descriptors_scene,CV_32F);


    //-- Step 3: Matching descriptor vectors using FLANN matcher
    Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");
    std::vector< DMatch > matches;
    matcher->match(descriptors_object, descriptors_scene, matches);

    double max_dist = 0; double min_dist = 100;

    //-- Quick calculation of max and min distances between keypoints
    for (int i = 0; i < descriptors_object.rows; i++)
    {
        double dist = matches[i].distance;
        if (dist < min_dist) min_dist = dist;
        if (dist > max_dist) max_dist = dist;
    }

    printf("-- Max dist : %f \n", max_dist);
    printf("-- Min dist : %f \n", min_dist);

    //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
    std::vector< DMatch > good_matches;

    for (int i = 0; i < descriptors_object.rows; i++)
    {
        if (matches[i].distance < 3 * min_dist)
        {
            good_matches.push_back(matches[i]);
        }
    }

    Mat img_matches;

    drawMatches(img_object, keypoints_object, img_scene, keypoints_scene, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

    //-- Localize the object
    std::vector<Point2f> obj;
    std::vector<Point2f> scene;
    for (int i = 0; i < good_matches.size(); i++)
    {
        //-- Get the keypoints from the good matches
        obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
        scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
    }


    //-- Show detected matches
  imshow( "Good Matches", img_matches );

  for( int i = 0; i < (int)good_matches.size(); i++ )
  { printf( "-- Good Match [%d] Keypoint 1: %d  -- Keypoint 2: %d  \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); }

    waitKey(0);
    return 0;


}
#包括
#包括
使用名称空间cv;
//无效自述();
/**@主功能*/
int main(int argc,字符**argv)
{
如果(argc!=3)
{//readme();
返回-1;}
Mat img_object=imread(argv[1],imread_灰度);
Mat img_scene=imread(argv[2],imread_灰度);
如果(!img_object.data | |!img_scene.data)
{
std::无法检测(img_场景、关键点_场景);
//--步骤2:计算描述符(特征向量)
Ptr提取器=ORB::create();
Mat描述符\u对象,描述符\u场景;
提取器->计算(img\u对象、关键点\u对象、描述符\u对象);
提取器->计算(img\U场景、关键点\U场景、描述符\U场景);
描述符\u object.convertTo(描述符\u object,CV\u 32F);
descriptors\u scene.convertTo(descriptors\u scene,CV\u 32F);
//--步骤3:使用FLANN匹配器匹配描述符向量
Ptr matcher=DescriptorMatcher::create(“flannbase”);
标准::向量匹配;
匹配器->匹配(描述符\对象、描述符\场景、匹配);
双最大距离=0;双最小距离=100;
//--快速计算关键点之间的最大和最小距离
对于(int i=0;i最大距离)最大距离=距离;
}
printf(“--Max dist:%f\n”,Max\u dist);
printf(“--最小距离:%f\n”,最小距离);
//--仅绘制“良好”匹配(即距离小于3*min\u dist)
标准::矢量良好匹配;
对于(int i=0;i
  • 双最大距离=0;双最小距离=100; 为什么我们要将这些距离分别声明为0和100?作为我得到的输出 最大距离:488.559113最小距离:100.000000。它似乎错了

  • if(匹配[i]。距离<3*min\u距离) { 很好的匹配。推回(匹配[i]); } 为什么我不能将3*min_dist更改为2*min_dist?如果我这样做,我就没有匹配项

  • 是否必须有官方文件中显示的平行线。我没有平行线。我无法发布屏幕截图

  • 这些初始化似乎针对编写此代码的特定情况进行了调整
  • 这同样是由于调整了参数。尝试使用不同的图像集进行实验,结果会有所变化。另外,另一个好的做法是使用次优距离来找到好的匹配
  • 正确的匹配应该有平行线,因为两幅图像中匹配的相对位置应该保持不变。任何交叉线都是不正确的匹配

  • @miki你能帮我吗?