Warning: file_get_contents(/data/phpspider/zhask/data//catemap/4/c/57.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
C os161中userptr\t类型的用途是什么?_C_Operating System_Kernel_Os161 - Fatal编程技术网

C os161中userptr\t类型的用途是什么?

C os161中userptr\t类型的用途是什么?,c,operating-system,kernel,os161,C,Operating System,Kernel,Os161,我正在努力完成操作系统课程的作业 我在作业中有一个问题: userptr\t的目的是什么 当我在源代码中搜索userptr\u t时,我发现: /* * Define userptr_t as a pointer to a one-byte struct, so it won't mix * with other pointers. */ struct __userptr { char _dummy; }; typedef struct __userptr *userptr_t; typ

我正在努力完成操作系统课程的作业

我在作业中有一个问题:

userptr\t的目的是什么

当我在源代码中搜索
userptr\u t
时,我发现:

/*
 * Define userptr_t as a pointer to a one-byte struct, so it won't mix
 * with other pointers.
 */

struct __userptr { char _dummy; };
typedef struct __userptr *userptr_t;
typedef const struct __userptr *const_userptr_t;
我无法完全理解它的用途,有人能解释一下这种类型的用途吗

例如,在函数
copyin
copyinstr
copyinstr
copyinstr
copyinstr
和其他函数中的文件
copyinout.c
中使用了它:

#include <types.h>
#include <kern/errno.h>
#include <lib.h>
#include <setjmp.h>
#include <thread.h>
#include <current.h>
#include <vm.h>
#include <copyinout.h>

/*
 * User/kernel memory copying functions.
 *
 * These are arranged to prevent fatal kernel memory faults if invalid
 * addresses are supplied by user-level code. This code is itself
 * machine-independent; it uses the machine-dependent C setjmp/longjmp
 * facility to perform recovery.
 *
 * However, it assumes things about the memory subsystem that may not
 * be true on all platforms.
 *
 * (1) It assumes that user memory is mapped into the current address
 * space while running in the kernel, and can be accessed by just
 * dereferencing a pointer in the ordinary way. (And not, for example,
 * with special instructions or via special segment registers.)
 *
 * (2) It assumes that the user-space region of memory is contiguous
 * and extends from 0 to some virtual address USERSPACETOP, and so if
 * a user process passes a kernel address the logic in copycheck()
 * will trap it.
 *
 * (3) It assumes that access to user memory from the kernel behaves
 * the same way as access to user memory from user space: for
 * instance, that the processor honors read-only bits on memory pages
 * when in kernel mode.
 *
 * (4) It assumes that if a proper user-space address that is valid
 * but not present, or not valid at all, is touched from the kernel,
 * that the correct faults will occur and the VM system will load the
 * necessary pages and whatnot.
 *
 * (5) It assumes that the machine-dependent trap logic provides and
 * honors a tm_badfaultfunc field in the thread_machdep structure.
 * This feature works as follows: if an otherwise fatal fault occurs
 * in kernel mode, and tm_badfaultfunc is set, execution resumes in
 * the function pointed to by tm_badfaultfunc.
 *
 * This code works by setting tm_badfaultfunc and then copying memory
 * in an ordinary fashion. If these five assumptions are satisfied,
 * which is the case for many ordinary CPU types, this code should
 * function correctly. If the assumptions are not satisfied on some
 * platform (for instance, certain old 80386 processors violate
 * assumption 3), this code cannot be used, and cpu- or platform-
 * specific code must be written.
 *
 * To make use of this code, in addition to tm_badfaultfunc the
 * thread_machdep structure should contain a jmp_buf called
 * "tm_copyjmp".
 */

/*
 * Recovery function. If a fatal fault occurs during copyin, copyout,
 * copyinstr, or copyoutstr, execution resumes here. (This behavior is
 * caused by setting t_machdep.tm_badfaultfunc and is implemented in
 * machine-dependent code.)
 *
 * We use the C standard function longjmp() to teleport up the call
 * stack to where setjmp() was called. At that point we return EFAULT.
 */
static
void
copyfail(void)
{
    longjmp(curthread->t_machdep.tm_copyjmp, 1);
}

/*
 * Memory region check function. This checks to make sure the block of
 * user memory provided (an address and a length) falls within the
 * proper userspace region. If it does not, EFAULT is returned.
 *
 * stoplen is set to the actual maximum length that can be copied.
 * This differs from len if and only if the region partially overlaps
 * the kernel.
 *
 * Assumes userspace runs from 0 through USERSPACETOP-1.
 */
static
int
copycheck(const_userptr_t userptr, size_t len, size_t *stoplen)
{
    vaddr_t bot, top;

    *stoplen = len;

    bot = (vaddr_t) userptr;
    top = bot+len-1;

    if (top < bot) {
        /* addresses wrapped around */
        return EFAULT;
    }

    if (bot >= USERSPACETOP) {
        /* region is within the kernel */
        return EFAULT;
    }

    if (top >= USERSPACETOP) {
        /* region overlaps the kernel. adjust the max length. */
        *stoplen = USERSPACETOP - bot;
    }

    return 0;
}

/*
 * copyin
 *
 * Copy a block of memory of length LEN from user-level address USERSRC
 * to kernel address DEST. We can use memcpy because it's protected by
 * the tm_badfaultfunc/copyfail logic.
 */
int
copyin(const_userptr_t usersrc, void *dest, size_t len)
{
    int result;
    size_t stoplen;

    result = copycheck(usersrc, len, &stoplen);
    if (result) {
        return result;
    }
    if (stoplen != len) {
        /* Single block, can't legally truncate it. */
        return EFAULT;
    }

    curthread->t_machdep.tm_badfaultfunc = copyfail;

    result = setjmp(curthread->t_machdep.tm_copyjmp);
    if (result) {
        curthread->t_machdep.tm_badfaultfunc = NULL;
        return EFAULT;
    }

    memcpy(dest, (const void *)usersrc, len);

    curthread->t_machdep.tm_badfaultfunc = NULL;
    return 0;
}

/*
 * copyout
 *
 * Copy a block of memory of length LEN from kernel address SRC to
 * user-level address USERDEST. We can use memcpy because it's
 * protected by the tm_badfaultfunc/copyfail logic.
 */
int
copyout(const void *src, userptr_t userdest, size_t len)
{
    int result;
    size_t stoplen;

    result = copycheck(userdest, len, &stoplen);
    if (result) {
        return result;
    }
    if (stoplen != len) {
        /* Single block, can't legally truncate it. */
        return EFAULT;
    }

    curthread->t_machdep.tm_badfaultfunc = copyfail;

    result = setjmp(curthread->t_machdep.tm_copyjmp);
    if (result) {
        curthread->t_machdep.tm_badfaultfunc = NULL;
        return EFAULT;
    }

    memcpy((void *)userdest, src, len);

    curthread->t_machdep.tm_badfaultfunc = NULL;
    return 0;
}

/*
 * Common string copying function that behaves the way that's desired
 * for copyinstr and copyoutstr.
 *
 * Copies a null-terminated string of maximum length MAXLEN from SRC
 * to DEST. If GOTLEN is not null, store the actual length found
 * there. Both lengths include the null-terminator. If the string
 * exceeds the available length, the call fails and returns
 * ENAMETOOLONG.
 *
 * STOPLEN is like MAXLEN but is assumed to have come from copycheck.
 * If we hit MAXLEN it's because the string is too long to fit; if we
 * hit STOPLEN it's because the string has run into the end of
 * userspace. Thus in the latter case we return EFAULT, not
 * ENAMETOOLONG.
 */
static
int
copystr(char *dest, const char *src, size_t maxlen, size_t stoplen,
    size_t *gotlen)
{
    size_t i;

    for (i=0; i<maxlen && i<stoplen; i++) {
        dest[i] = src[i];
        if (src[i] == 0) {
            if (gotlen != NULL) {
                *gotlen = i+1;
            }
            return 0;
        }
    }
    if (stoplen < maxlen) {
        /* ran into user-kernel boundary */
        return EFAULT;
    }
    /* otherwise just ran out of space */
    return ENAMETOOLONG;
}

/*
 * copyinstr
 *
 * Copy a string from user-level address USERSRC to kernel address
 * DEST, as per copystr above. Uses the tm_badfaultfunc/copyfail
 * logic to protect against invalid addresses supplied by a user
 * process.
 */
int
copyinstr(const_userptr_t usersrc, char *dest, size_t len, size_t *actual)
{
    int result;
    size_t stoplen;

    result = copycheck(usersrc, len, &stoplen);
    if (result) {
        return result;
    }

    curthread->t_machdep.tm_badfaultfunc = copyfail;

    result = setjmp(curthread->t_machdep.tm_copyjmp);
    if (result) {
        curthread->t_machdep.tm_badfaultfunc = NULL;
        return EFAULT;
    }

    result = copystr(dest, (const char *)usersrc, len, stoplen, actual);

    curthread->t_machdep.tm_badfaultfunc = NULL;
    return result;
}

/*
 * copyoutstr
 *
 * Copy a string from kernel address SRC to user-level address
 * USERDEST, as per copystr above. Uses the tm_badfaultfunc/copyfail
 * logic to protect against invalid addresses supplied by a user
 * process.
 */
int
copyoutstr(const char *src, userptr_t userdest, size_t len, size_t *actual)
{
    int result;
    size_t stoplen;

    result = copycheck(userdest, len, &stoplen);
    if (result) {
        return result;
    }

    curthread->t_machdep.tm_badfaultfunc = copyfail;

    result = setjmp(curthread->t_machdep.tm_copyjmp);
    if (result) {
        curthread->t_machdep.tm_badfaultfunc = NULL;
        return EFAULT;
    }

    result = copystr((char *)userdest, src, len, stoplen, actual);

    curthread->t_machdep.tm_badfaultfunc = NULL;
    return result;
}
#包括
#包括
#包括
#包括
#包括
#包括
#包括
#包括
/*
*用户/内核内存复制函数。
*
*这些设置是为了在无效的情况下防止致命的内核内存故障
*地址由用户级代码提供。这个代码本身就是
*机器独立;它使用依赖于机器的C setjmp/longjmp
*执行恢复的设施。
*
*但是,它假定内存子系统的某些方面可能不存在
*在所有平台上都是如此。
*
*(1)它假定用户内存映射到当前地址
*在内核中运行时的空间,只需
*以普通方式取消对指针的引用。(例如,
*使用特殊指令或通过特殊段寄存器。)
*
*(2)它假定内存的用户空间区域是连续的
*并从0扩展到某个虚拟地址USERSPACETOP,如果
*用户进程将内核地址传递给copycheck()中的逻辑
*我会抓住它的。
*
*(3)它假设从内核访问用户内存的行为
*与从用户空间访问用户内存的方式相同:for
*例如,处理器接受内存页上的只读位
*当处于内核模式时。
*
*(4)它假设如果一个正确的用户空间地址是有效的
*但是从内核中触摸不存在或根本无效,
*将发生正确的故障,并且VM系统将加载
*必要的页面等等。
*
*(5)它假设依赖于机器的陷阱逻辑提供和
*在thread_machdep结构中为tm_badfaultfunc字段命名。
*此功能的工作原理如下:如果发生其他致命故障
*在内核模式下,如果设置了tm_badfaultfunc,则在
*tm_badfaultfunc指向的函数。
*
*此代码通过设置tm_badfaultfunc然后复制内存来工作
*以普通的方式。如果满足这五个假设,
*这是许多普通CPU类型的情况,该代码应该
*功能正常。如果在某些情况下不满足假设
*平台(例如,某些旧的80386处理器
*假设3),此代码无法使用,并且cpu或平台-
*必须编写特定的代码。
*
*要使用此代码,除了tm_badfaultfunc
*thread_machdep结构应该包含一个名为
*“tm_copyjmp”。
*/
/*
*恢复功能。如果在copyin、copyout期间发生致命故障,
*copyinstr,或copyinstr,在此处继续执行。(这种行为是错误的
*由设置t_machdep.tm_badfaultfunc引起,并在中实现
*机器相关代码。)
*
*我们使用C标准函数longjmp()来传送调用
*堆栈到调用setjmp()的位置。在这一点上,我们返回EFAULT。
*/
静止的
无效的
复制失败(无效)
{
longjmp(curthread->t_machdep.tm_copyjmp,1);
}
/*
*内存区域检查功能。这将检查以确保
*提供的用户内存(地址和长度)在
*适当的用户空间区域。如果没有,则返回EFAULT。
*
*stoplen设置为可复制的实际最大长度。
*当且仅当区域部分重叠时,这与len不同
*内核。
*
*假定用户空间从0运行到USERSPACETOP-1。
*/
静止的
int
复制检查(常量用户ptr\u t用户ptr、大小长度、大小长度*停止长度)
{
vaddr_t机器人,顶部;
*stoplen=len;
bot=(vaddr_t)userptr;
top=bot+len-1;
如果(顶部<底部){
/*环绕的地址*/
返回默认值;
}
如果(bot>=USERSPACETOP){
/*区域位于内核中*/
返回默认值;
}
if(top>=USERSPACETOP){
/*区域与内核重叠。调整最大长度*/
*stoplen=USERSPACETOP-bot;
}
返回0;
}
/*
*抄袭
*
*从用户级地址USERSRC复制长度为LEN的内存块
*到内核地址DEST。我们可以使用memcpy,因为它受
*tm_badfaultfunc/copyfail逻辑。
*/
int
copyin(const_userptr_t usersrc,void*dest,size_t len)
{
int结果;
尺寸(t stoplen);;
结果=复制检查(usersrc、len和stoplen);
如果(结果){
返回结果;
}
if(stoplen!=len){
/*单个块,不能合法地截断它*/
返回默认值;
}
curthread->t_machdep.tm_badfaultfunc=copyfail;
结果=setjmp(curthread->t_machdep.tm_copyjmp);
如果(结果){
curthread->t_machdep.tm_badfaultfunc=NULL;
返回默认值;
}
memcpy(dest,(const void*)usersrc,len);
curthread->t_machdep.tm_badfaultfunc=NULL;
返回0;
}
/*
*抄写
*
*将长度为LEN的内存块从内核地址SRC复制到
*用户级地址USERDEST。我们可以使用memcpy,因为它是
*受tm_badfaultfunc/copyfail逻辑保护。
*/
int
复制输出(const void*src、userptr\t userdest、size\t len)
{
int结果;
尺寸(t stoplen);;
结果=复制检查(userdest、len和stoplen);
如果(结果){
返回结果;
}
if(stoplen!=len){
/*单个块,不能合法地截断它*/
返回默认值;
}
curthread->t_machdep.tm_badfaultfunc=copyfail;
结果=setjmp(curthread->t_machdep.tm_copyjmp);
如果(结果){
curthread->t_machdep.tm_badfaultfunc=NULL;
返回默认值;
}
memcpy((void*)userdest、src、len);
curthread->t_machdep.tm_badfaultfunc=NULL;