Warning: file_get_contents(/data/phpspider/zhask/data//catemap/6/cplusplus/134.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
I';m使用FFTW进行重叠加FFT卷积,未得到预期结果 我尝试用FFT实现两个数组的卷积,使用C++中的FFTW库实现重叠叠加算法。矢量数据具体包括使用sndfile从WAV文件加载的双倍数据-其中一个是用于处理的WAV文件,另一个是输入响应(IR)的WAV文件,因此基本上目标是卷积混响_C++_Signal Processing_Fft_Complex Numbers_Fftw - Fatal编程技术网

I';m使用FFTW进行重叠加FFT卷积,未得到预期结果 我尝试用FFT实现两个数组的卷积,使用C++中的FFTW库实现重叠叠加算法。矢量数据具体包括使用sndfile从WAV文件加载的双倍数据-其中一个是用于处理的WAV文件,另一个是输入响应(IR)的WAV文件,因此基本上目标是卷积混响

I';m使用FFTW进行重叠加FFT卷积,未得到预期结果 我尝试用FFT实现两个数组的卷积,使用C++中的FFTW库实现重叠叠加算法。矢量数据具体包括使用sndfile从WAV文件加载的双倍数据-其中一个是用于处理的WAV文件,另一个是输入响应(IR)的WAV文件,因此基本上目标是卷积混响,c++,signal-processing,fft,complex-numbers,fftw,C++,Signal Processing,Fft,Complex Numbers,Fftw,我之前已经用Python成功地实现了这一点,但这涉及通过scipy.signal使用FFT卷积,所以我不必自己实现重叠添加。但是从那次经历中,我可以确认我使用的是脉冲响应,它应该通过FFT与输入信号巧妙地卷积,并产生与Python输出相当的可识别回波效果。我还可以确认2个WAV文件具有匹配的比特率(16位)和采样率(44.1 kHz) 一些错误的启动只会产生平坦的噪声作为输出,这是一个常见的绊脚石。现在我产生的WAV输出几乎类似于脉冲响应的变化抽头,但在每个感知的“抽头”处只有噪声脉冲 我遵循两

我之前已经用Python成功地实现了这一点,但这涉及通过scipy.signal使用FFT卷积,所以我不必自己实现重叠添加。但是从那次经历中,我可以确认我使用的是脉冲响应,它应该通过FFT与输入信号巧妙地卷积,并产生与Python输出相当的可识别回波效果。我还可以确认2个WAV文件具有匹配的比特率(16位)和采样率(44.1 kHz)

一些错误的启动只会产生平坦的噪声作为输出,这是一个常见的绊脚石。现在我产生的WAV输出几乎类似于脉冲响应的变化抽头,但在每个感知的“抽头”处只有噪声脉冲

我遵循两个指南来实施重叠添加;

我还将关注一些在线示例和其他StackOverflow线程,并阅读FFTW官方文档()

以下是我的代码,其过程解释如下:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <sndfile.h>
#include <iostream>
#include <cstring>
#include <vector>
#include <complex.h>
#include <fftw3.h>

using namespace std;

#define ARRAY_LEN(x)    ((int) (sizeof (x) / sizeof (x [0])))
#define MAX(x,y)        ((x) > (y) ? (x) : (y))
#define MIN(x,y)        ((x) < (y) ? (x) : (y))

fftw_complex* fftw_complex_transform(vector<double >);
fftw_complex* ifft_from_complex_vector(vector<vector<double> >);
vector<double> convolved_block(vector<double>, vector<complex<double> >, int);
vector<complex<double> > filter_kernel_cpx_vec(vector<double>);
vector<double> padded(vector<double>, int);
void testDummyData();

int main (int argc, char ** argv) {
    SNDFILE *infile, *outfile, *irfile ;
    SF_INFO sfinfo ;
    double buffer[1024];
    sf_count_t count;

    // 1 - import both WAV files 
    vector<double> inputWavArr;
    vector<double> irWavArr;

    if (argc != 4) {
        printf("\nUsage :\n\n    <executable name>  <input signal file> <impulse response file> <output file>\n") ;
        exit(0);
    }

    memset (&sfinfo, 0, sizeof (sfinfo)) ;
    if ((infile = sf_open (argv [1], SFM_READ, &sfinfo)) == NULL)     {     
        printf ("Error : Not able to open input file '%s'\n", argv [1]);
        sf_close (infile);
        exit (1) ;
    } 

    if ((irfile = sf_open (argv [2], SFM_READ, &sfinfo)) == NULL)     {     
        printf ("Error : Not able to open input file '%s'\n", argv [2]);
        sf_close (irfile);
        exit (1) ;
    }   

    if ((outfile = sf_open (argv [3], SFM_WRITE, &sfinfo)) == NULL) { 
        printf ("Error : Not able to open output file '%s'\n", argv [3]);
        sf_close (outfile);
        exit (1);
    }

    while ((count = sf_read_double (infile, buffer, ARRAY_LEN (buffer))) > 0) {
        for (int i = 0; i < 1024; i++)
            inputWavArr.push_back(buffer[i]);
    }
    while ((count = sf_read_double (irfile, buffer, ARRAY_LEN (buffer))) > 0) {
        for (int i = 0; i < 1024; i++)
            irWavArr.push_back(buffer[i]); // max value 0.0408325
    }
    // 2 - Settle on a padding scheme
    int irLen = irWavArr.size();
    int windowSize = 262144 - irLen+1; //  262144 is a pwr of 2
    const int outputLength = irLen + windowSize - 1;

    sf_close(infile);
    sf_close(irfile);

    irWavArr = padded(irWavArr, outputLength);
    int newIrLength = irWavArr.size();
    // 3 and 4 - use FFTW to process IR kernel into vector of complex values
    vector<complex<double> > ir_vec;
    ir_vec = filter_kernel_cpx_vec(irWavArr);
    // 5 - divide dry input signal into sections of length windowSize
    int numSections = floor(inputWavArr.size()/windowSize);

    // OVERLAP-ADD PROCEDURE
    vector<vector<double> > totals;
    cout << "numSections is " << numSections << "\n";

    for (int j=0; j<numSections; j++) { // may be OBOB use numSections+1? or pad inputWavArr? 
        vector<double> total;
        cout << "convolving section " << j << "\n";
        vector<double> section_arr;
        for (int i=j*windowSize; i<(j*windowSize + windowSize); i++) {
            section_arr.push_back(inputWavArr[i]);
        }

        // Hanning window
        for (int i = 0; i < windowSize; i++) {
            double multiplier = 0.5 * (1 - cos(2*M_PI*i/(windowSize-1)));
            section_arr[i] = multiplier * section_arr[i];
        }
        int old_section_arr_size = section_arr.size();
        section_arr = padded(section_arr, outputLength);
        // 6 - yield convolved block for each section
        vector<double> output = convolved_block(section_arr, ir_vec, old_section_arr_size+irLen-1);

        for (int i=0; i<output.size(); i++) {
            total.push_back(output[i]);
        }
        // 7 - append convolved block to vector of resultant block vectors
        totals.push_back(total);
    }
    vector<double> results(inputWavArr.size()+newIrLength-1, 0);
    // 8 - loop though vector of convolved segments, and carry out addition of overlapping sub-segments to yield final "results" vector
    for (int j=0; j<numSections; j++) {
        vector<double> totals_arr = totals[j];
        cout << "overlap summing section " << j << "\n";
        for (int i=0; i<totals_arr.size(); i++) {
            int newIdx = j*windowSize+i;
            results[newIdx] += totals_arr[i];
        }
    }
    // RESULTS MARK THE END OF OVERLAP-ADD PROCEDURE

    // load result vector into buffer for writing via libsndfile
    double* buff3 = (double*)malloc(results.size()*sizeof(double));
    for (int idx = 0; idx < results.size(); idx++) {
        buff3[idx] = results[idx]/400; // normalizing factor for these samples... output without this has amplitude going almost up to 120. input file had max around 0.15. max should be 1 about
    }

    long writtenFrames = sf_writef_double (outfile, buff3, results.size());
    sf_close (outfile);

    return 0 ;
}

fftw_complex* fftw_complex_transform(vector<double> signal_wav) {
    int N = signal_wav.size();
    fftw_complex *in, *out;
    fftw_plan irPlan;
    in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*N);
    out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*N);

    for (int i = 0; i < signal_wav.size(); i++)
    {
        in[i][0] = signal_wav[i];
        in[i][1] = (float)0; // complex component .. 0 for input of wav file
    }
    irPlan = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
    fftw_execute(irPlan);
    fftw_destroy_plan(irPlan);
    fftw_free(in);

    return out;
}

vector<complex<double> > filter_kernel_cpx_vec(vector<double> input) {
    fftw_complex* irFFT = fftw_complex_transform(input);

    vector<complex<double> > kernel_vec;
    for (int i=0; i<input.size(); i++) {
        complex<double> m1 (irFFT[i][0], irFFT[i][1]);
        kernel_vec.push_back(m1);
    }

    fftw_free(irFFT); 
    return kernel_vec;
}

fftw_complex* ifft_from_complex_vector(vector<vector<double> > signal_vec) {
    int N = signal_vec.size();
    fftw_complex *in, *out;
    fftw_plan irPlan;
    in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*N);
    out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*N);

    for (int i = 0; i < signal_vec.size(); i++)
    {
        in[i][0] = signal_vec[i][0]; // real
        in[i][1] = signal_vec[i][1]; // imag
    }
    irPlan = fftw_plan_dft_1d(N, in, out, FFTW_BACKWARD, FFTW_ESTIMATE);
    fftw_execute(irPlan);
    fftw_destroy_plan(irPlan);
    fftw_free(in);

    return out;
}

vector<double> convolved_block(vector<double> in_vector, vector<complex<double> > ir_cpx_vector, int size) {
    fftw_complex* outputFFT = fftw_complex_transform(in_vector);

    vector<vector<double> > products;
    vector<complex<double> > sig_fft_cpx;
    for (int i=0; i<size; i++) {
        complex<double> m1 (outputFFT[i][0], outputFFT[i][1]);
        sig_fft_cpx.push_back(m1);
    }        
    fftw_free(outputFFT);
    for (int j=0; j<size; j++) {
        std::complex<double> complexProduct = sig_fft_cpx[j]*ir_cpx_vector[j];
        double re = real(complexProduct);
        double im = imag(complexProduct);
        vector<double> elemVec(2);
        elemVec[0] = re;
        elemVec[1] = im;

        products.push_back(elemVec);
    }
    fftw_complex* revFFT = ifft_from_complex_vector(products);
    vector<double> out_vec_dbl;

    for (int i=0; i<size; i++) {
        out_vec_dbl.push_back(outputFFT[i][0]);
    }
    fftw_free(revFFT);
    return out_vec_dbl;
}

vector<double> padded(vector<double> input, int total) {
    vector<double> padded_vec;
    for (int i = 0; i<input.size(); i++) {
    padded_vec.push_back(input[i]);
    }
    int numZeroes = total - input.size();
    for (int i = 0; i< numZeroes; i++) {
    padded_vec.push_back((double)0);
    }
    return padded_vec;
}

void testDummyData() {
    vector<double> dummyFilter;
    dummyFilter.push_back(1);
    dummyFilter.push_back(-1);
    dummyFilter.push_back(1);

    vector<double> dummySignal;
    dummySignal.push_back(3);
    dummySignal.push_back(-1);
    dummySignal.push_back(0);
    dummySignal.push_back(3);
    dummySignal.push_back(2);
    dummySignal.push_back(0);
    dummySignal.push_back(1);
    dummySignal.push_back(2);
    dummySignal.push_back(1);

    const int nearWindowSize=3;
    const int nearIrLength=3;
    const int totalLength = 5;

    dummyFilter = padded(dummyFilter, totalLength);
    vector<complex<double> > dummy_ir_vec = filter_kernel_cpx_vec(dummyFilter);

    int localNumSections = 3;
    vector<vector<double> > outputs;
    for (int j=0; j<localNumSections; j++) {
        vector<double> local_section;
        for (int i; i<nearWindowSize; i++) {
            int idx = j*nearWindowSize + i;
            local_section.push_back(dummySignal[idx]);
        }
        local_section = padded(local_section, totalLength);
        vector<double> local_output = convolved_block(local_section, dummy_ir_vec, totalLength);
        outputs.push_back(local_output);
    }
    vector<double> local_results(11,0); // example has 11 in output

    for (int j=0; j<localNumSections; j++) {
        vector<double> local_totals_arr = outputs[j];
        cout << "overlap summing section " << j << "\n";
        for (int i=0; i<local_totals_arr.size(); i++) {
            int newIdx = j*nearWindowSize+i;
            local_results[newIdx] += local_totals_arr[i];
        }
    }    
    for (int i=0; i<11; i++) {
        cout << "result " << i << "\n";
        cout << local_results[i] << "\n";
    }
}
#包括
#包括
#包括
#包括
#包括
#包括
#包括
#包括
#包括
#包括
使用名称空间std;
#定义数组长度(x)((int)(sizeof(x)/sizeof(x[0]))
#定义最大值(x,y)((x)>(y)?(x):(y))
#定义最小值(x,y)((x)<(y)?(x):(y))
fftw_复数*fftw_复数_变换(向量);
fftw_复数*来自_复数_向量(向量)的ifft_;
向量卷积_块(向量,向量,int);
向量滤波器(内核)(cpx)(向量);;
矢量填充(矢量,int);
void testDummyData();
int main(int argc,字符**argv){
SNDFILE*infile、*outfile、*irfile;
SF_信息sfinfo;
双缓冲区[1024];
sf_计数\u t计数;
//1-导入两个WAV文件
矢量输入;
向量irWavArr;
如果(argc!=4){
printf(“\n用法:\n\n\n”);
出口(0);
}
memset(&sfinfo,0,sizeof(sfinfo));
如果((infle=sf_open(argv[1],SFM_READ,&sfinfo))==NULL){
printf(“错误:无法打开输入文件“%s”\n”,argv[1]);
sf_关闭(填充);
出口(1);
} 
如果((irfile=sf_open(argv[2],SFM_READ,&sfinfo))==NULL){
printf(“错误:无法打开输入文件“%s”\n”,argv[2]);
sf_关闭(irfile);
出口(1);
}   
如果((outfile=sf_open(argv[3],SFM_WRITE,&sfinfo))==NULL){
printf(“错误:无法打开输出文件“%s”\n”,argv[3]);
sf_关闭(输出文件);
出口(1);
}
而((计数=sf\u读取双精度(填充、缓冲、数组长度(缓冲)))>0){
对于(int i=0;i<1024;i++)
inputWavArr.push_back(缓冲区[i]);
}
而((count=sf\u read\u double(irfile、buffer、ARRAY\u LEN(buffer)))>0){
对于(int i=0;i<1024;i++)
irWavArr.push_back(缓冲区[i]);//最大值0.0408325
}
//2-确定填充方案
int irLen=irWavArr.size();
int windowSize=262144-irLen+1;//262144是2的pwr
const int outputLength=irLen+windowSize-1;
sf_关闭(填充);
sf_关闭(irfile);
irWavArr=填充(irWavArr,输出长度);
int newIrLength=irWavArr.size();
//3和4-使用FFTW将IR内核处理为复数向量
向量ir_-vec;
ir_vec=过滤器内核cpx_vec(irWavArr);
//5-将干输入信号分为若干段
int numSections=floor(inputWavArr.size()/windowSize);
//重叠-添加程序
矢量总数;

cout看起来我已经解决了基本问题。revFFT,从反向fft包装函数(ifft_from_complex_vector)返回的指针,在加载值后没有被引用。相反,代码在outputFFT中查找预期值,该值已经通过fftw_free释放

另一件有助于消除混淆的事情是切换到FFTW函数FFTW_plan_dft_r2c_1d和FFTW_plan_dft_c2r_1d,以替换使用标志FFTW_BACKWARD和FFTW_FORWARD对FFTW_plan_dft_1d的调用。这些类型现在更容易跟踪,特别是对于需要使用FFTW的实数向量

卷积混响现在的渲染几乎和预期的一样。有些窗口和孤立的部分会出现混叠和失真。这可能是因为我仍然需要一个稳健的标准化方案,正如Cris所建议的。这就是我下一步的工作,但谢天谢地,基本问题已经解决

工作代码如下:

//Give the input and output file names on the command line
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <sndfile.h>
#include <iostream>
#include <cstring>
#include <vector>
#include <complex.h>
#include <fftw3.h>

using namespace std;

#define ARRAY_LEN(x)    ((int) (sizeof (x) / sizeof (x [0])))
#define MAX(x,y)        ((x) > (y) ? (x) : (y))
#define MIN(x,y)        ((x) < (y) ? (x) : (y))

fftw_complex* fftw_complex_transform(vector<double >);
//fftw_complex* ifft_from_complex_vector(vector<vector<double> >);
double* ifft_from_complex_vector(vector<vector<double> >);
vector<double> convolved_block(vector<double>, vector<complex<double> >, int);
vector<complex<double> > filter_kernel_cpx_vec(vector<double>);
vector<double> padded(vector<double>, int);
void testDummyData();

int main (int argc, char ** argv) {
    SNDFILE *infile, *outfile, *irfile ;
    SF_INFO sfinfo ;
    double buffer[1024];
    sf_count_t count;

    //for fftw3
    vector<double> inputWavArr;
    vector<double> irWavArr;

    if (argc != 4) {
        printf("\nUsage :\n\n    <executable name>  <input signal file> <impulse response file> <output file>\n") ;
        exit(0);
    }

    memset (&sfinfo, 0, sizeof (sfinfo)) ;
    if ((infile = sf_open (argv [1], SFM_READ, &sfinfo)) == NULL)     {     
        printf ("Error : Not able to open input file '%s'\n", argv [1]);
        sf_close (infile);
        exit (1) ;
    } 

    if ((irfile = sf_open (argv [2], SFM_READ, &sfinfo)) == NULL)     {     
        printf ("Error : Not able to open input file '%s'\n", argv [2]);
        sf_close (irfile);
        exit (1) ;
    }   

    if ((outfile = sf_open (argv [3], SFM_WRITE, &sfinfo)) == NULL) { 
        printf ("Error : Not able to open output file '%s'\n", argv [3]);
        sf_close (outfile);
        exit (1);
    }

    while ((count = sf_read_double (infile, buffer, ARRAY_LEN (buffer))) > 0) {
        for (int i = 0; i < 1024; i++)
            inputWavArr.push_back(buffer[i]);
    }
    double sumIrImpulses = 0;
    while ((count = sf_read_double (irfile, buffer, ARRAY_LEN (buffer))) > 0) {
        for (int i = 0; i < 1024; i++) {
            double el = buffer[i];
            irWavArr.push_back(el); // max value 0.0408325
            sumIrImpulses += (el);
        }
    }
    sumIrImpulses = abs(sumIrImpulses);
    //const int irLen = 189440; // filter(ir) block len
    int irLen = irWavArr.size();
    //const int windowSize = 72705; // s.t. irLen+windowSize-1 is a pwr of 2
    int windowSize = 262144 - irLen+1; //  262144 is a pwr of 2
    const int outputLength = irLen + windowSize - 1;

    sf_close(infile);
    sf_close(irfile);

    irWavArr = padded(irWavArr, outputLength);
    int newIrLength = irWavArr.size();

    vector<complex<double> > ir_vec;
    ir_vec = filter_kernel_cpx_vec(irWavArr);

    int numSections = floor(inputWavArr.size()/windowSize);
    if (numSections*windowSize != inputWavArr.size()) {
        inputWavArr = padded(inputWavArr, (numSections+1)*windowSize);
        numSections++;
    }



    // OVERLAP-ADD PROCEDURE
    vector<vector<double> > totals;
    cout << "numSections is " << numSections << "\n";

    for (int j=0; j<numSections; j++) { // may be OBOB use numSections+1? or pad inputWavArr? 
        vector<double> total;
        cout << "convolving section " << j << "\n";
        vector<double> section_arr;
        for (int i=j*windowSize; i<(j*windowSize + windowSize); i++) {
            section_arr.push_back(inputWavArr[i]/200.21);
        }

        // hanning window
        for (int i = 0; i < windowSize; i++) {
            double multiplier = 0.5 * (1 - cos(2*M_PI*i/(windowSize-1)));
            section_arr[i] = multiplier * section_arr[i];
        }
        int old_section_arr_size = section_arr.size();
        section_arr = padded(section_arr, outputLength);
        vector<double> output = convolved_block(section_arr, ir_vec, old_section_arr_size+irLen-1);

        for (int i=0; i<output.size(); i++) {
            total.push_back(output[i]); // normalize
        }
        totals.push_back(total);
    }
    vector<double> results(inputWavArr.size()+newIrLength-1, 0);

    for (int j=0; j<numSections; j++) {
        vector<double> totals_arr = totals[j];
        cout << "overlap summing section " << j << "\n";
        for (int i=0; i<totals_arr.size(); i++) {
            int newIdx = j*windowSize+i;
            results[newIdx] += totals_arr[i]/550;
        }
    }
    double maxVal = 0;
    for (int i=0; i<results.size(); i++) {
        if (results[i] > maxVal) {
            maxVal = results[i];
        }
    }
    cout << "maxval" << maxVal << "\n";
    cout << "sumIrImpulses" << sumIrImpulses << "\n";
    // RESULTS MARK THE END OF OVERLAP-ADD PROCEDURE
    double* buff3 = (double*)malloc(results.size()*sizeof(double));
    for (int idx = 0; idx < results.size(); idx++) {
        buff3[idx] = results[idx]; // NO LONGER normalizing factor for these samples... output without this has amplitude going almost up to 120. input file had max around 0.15. max should be 1 about
    }

    long writtenFrames = sf_writef_double (outfile, buff3, results.size());
    sf_close (outfile);

    return 0 ;
}

fftw_complex* fftw_complex_transform(vector<double> signal_wav) {
    int N = signal_wav.size();
    double *in;
    fftw_complex *out;
    fftw_plan irPlan;
    //in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*N);
    in = (double*) malloc(sizeof(double)*N);
    out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*N);

    for (int i = 0; i < signal_wav.size(); i++)
    {
        //in[i][0] = signal_wav[i];
        in[i] = signal_wav[i];
        //in[i][1] = (float)0; // complex component .. 0 for input of wav file
    }
    //irPlan = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
    irPlan = fftw_plan_dft_r2c_1d(N, in, out, FFTW_ESTIMATE);
    fftw_execute(irPlan);
    fftw_destroy_plan(irPlan);
    fftw_free(in);

    return out;
}

vector<complex<double> > filter_kernel_cpx_vec(vector<double> input) {
    fftw_complex* irFFT = fftw_complex_transform(input);

    vector<complex<double> > kernel_vec;
    for (int i=0; i<input.size(); i++) {
        complex<double> m1 (irFFT[i][0], irFFT[i][1]);
        kernel_vec.push_back(m1);
    }

    fftw_free(irFFT); 
    return kernel_vec;
}

//fftw_complex* ifft_from_complex_vector(vector<vector<double> > signal_vec) {
double* ifft_from_complex_vector(vector<vector<double> > signal_vec) {
    int N = signal_vec.size();
    //fftw_complex *in, *out;
    fftw_complex *in;
    double *out;
    fftw_plan irPlan;
    in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*N);
    //out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*N);
    out = (double*) malloc(sizeof(double)*N);

    for (int i = 0; i < signal_vec.size(); i++)
    {
        in[i][0] = signal_vec[i][0]; // real
        in[i][1] = signal_vec[i][1]; // imag
    }
    //irPlan = fftw_plan_dft_1d(N, in, out, FFTW_BACKWARD, FFTW_ESTIMATE);
    irPlan = fftw_plan_dft_c2r_1d(N, in, out, FFTW_ESTIMATE);
    fftw_execute(irPlan);
    fftw_destroy_plan(irPlan);
    fftw_free(in);

    return out;
}

vector<double> convolved_block(vector<double> in_vector, vector<complex<double> > ir_cpx_vector, int size) {
    fftw_complex* outputFFT = fftw_complex_transform(in_vector);

    vector<vector<double> > products;
    vector<complex<double> > sig_fft_cpx;
    for (int i=0; i<size; i++) {
        complex<double> m1 (outputFFT[i][0], outputFFT[i][1]);
        sig_fft_cpx.push_back(m1);
    }        
    fftw_free(outputFFT);
    for (int j=0; j<size; j++) {
        std::complex<double> complexProduct = sig_fft_cpx[j]*ir_cpx_vector[j];
        double re = real(complexProduct);
        double im = imag(complexProduct);
        vector<double> elemVec(2);
        elemVec[0] = re;
        elemVec[1] = im;

        products.push_back(elemVec);
    }
    //fftw_complex* revFFT = ifft_from_complex_vector(products);
    double* revFFT = ifft_from_complex_vector(products);
    vector<double> out_vec_dbl;

    for (int i=0; i<size; i++) {
        //out_vec_dbl.push_back(outputFFT[i][0]);
        //out_vec_dbl.push_back(revFFT[i][0]);
        out_vec_dbl.push_back(revFFT[i]);
        //out_vec_dbl.push_back(outputFFT[i]);
    }
    //fftw_free(revFFT);
    free(revFFT);
    return out_vec_dbl;
}

vector<double> padded(vector<double> input, int total) {
    vector<double> padded_vec;
    for (int i = 0; i<input.size(); i++) {
    padded_vec.push_back(input[i]);
    }
    int numZeroes = total - input.size();
    for (int i = 0; i< numZeroes; i++) {
    padded_vec.push_back((double)0);
    }
    return padded_vec;
}

void testDummyData() {
    vector<double> dummyFilter;
    dummyFilter.push_back(1);
    dummyFilter.push_back(-1);
    dummyFilter.push_back(1);

    vector<double> dummySignal;
    dummySignal.push_back(3);
    dummySignal.push_back(-1);
    dummySignal.push_back(0);
    dummySignal.push_back(3);
    dummySignal.push_back(2);
    dummySignal.push_back(0);
    dummySignal.push_back(1);
    dummySignal.push_back(2);
    dummySignal.push_back(1);

    const int nearWindowSize=3;
    const int nearIrLength=3;
    const int totalLength = 5;

    dummyFilter = padded(dummyFilter, totalLength);
    vector<complex<double> > dummy_ir_vec = filter_kernel_cpx_vec(dummyFilter);

    int localNumSections = 3;
    vector<vector<double> > outputs;
    for (int j=0; j<localNumSections; j++) {
        vector<double> local_section;
        for (int i; i<nearWindowSize; i++) {
            int idx = j*nearWindowSize + i;
            local_section.push_back(dummySignal[idx]);
        }
        local_section = padded(local_section, totalLength);
        vector<double> local_output = convolved_block(local_section, dummy_ir_vec, totalLength);
        outputs.push_back(local_output);
    }
    vector<double> local_results(11,0); // example has 11 in output

    for (int j=0; j<localNumSections; j++) {
        vector<double> local_totals_arr = outputs[j];
        cout << "overlap summing section " << j << "\n";
        for (int i=0; i<local_totals_arr.size(); i++) {
            int newIdx = j*nearWindowSize+i;
            local_results[newIdx] += local_totals_arr[i];
        }
    }    
    for (int i=0; i<11; i++) {
        cout << "result " << i << "\n";
        cout << local_results[i] << "\n";
    }
}
//在命令行中指定输入和输出文件名
#包括
#包括
#包括
#包括
#包括
#包括
#包括
#包括
#包括
#包括
使用名称空间std;
#定义数组长度(x)((int)(sizeof(x)/sizeof(x[0]))
#定义最大值(x,y)((x)>(y)?(x):(y))
#定义最小值(x,y)((x)<(y)?(x):(y))
fftw_复数*fftw_复数_变换(向量);
//fftw_复数*来自_复数_向量(向量)的ifft_;
从复向量(向量)到双*ifft向量;
向量卷积_块(向量,向量,int);
向量滤波器(内核)(cpx)(向量);;
矢量填充(矢量,int);
void testDummyData();
int main(int argc,字符**argv){
SNDFILE*infile、*outfile、*irfile;
SF_信息sfinfo;
双缓冲区[1024];
sf_计数\u t计数;
//对于fftw3
矢量输入;
向量irWavArr;
如果(argc!=4){
printf(“\n用法:\n\n\n”);
出口(0);
}
memset(&sfinfo,0,sizeof(sfinfo));
如果((infle=sf_open(argv[1],SFM_READ,&sfinfo))==NULL){
printf(“错误:不是