Warning: file_get_contents(/data/phpspider/zhask/data//catemap/2/image-processing/2.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181

Warning: file_get_contents(/data/phpspider/zhask/data//catemap/9/opencv/3.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
Image processing 有没有办法检测图像是否模糊?_Image Processing_Opencv - Fatal编程技术网

Image processing 有没有办法检测图像是否模糊?

Image processing 有没有办法检测图像是否模糊?,image-processing,opencv,Image Processing,Opencv,我想知道是否有办法通过分析图像数据来确定图像是否模糊。是的,确实如此。计算快速傅里叶变换并分析结果。傅里叶变换告诉您图像中存在哪些频率。如果存在少量的高频,则图像模糊 定义术语“低”和“高”取决于您 编辑: 如评论中所述,如果您想要一个表示给定图像模糊度的单个浮点数,则必须制定一个合适的度量 提供这样一个度量标准。使用拉普拉斯内核卷积图像: 1 1 -4 1 1 并对输出使用一个健壮的最大度量,以获得一个可用于阈值化的数字。在计算拉普拉斯算子之前,尽量避免对图像进行过多的平滑处理

我想知道是否有办法通过分析图像数据来确定图像是否模糊。

是的,确实如此。计算快速傅里叶变换并分析结果。傅里叶变换告诉您图像中存在哪些频率。如果存在少量的高频,则图像模糊

定义术语“低”和“高”取决于您

编辑

如评论中所述,如果您想要一个表示给定图像模糊度的单个浮点数,则必须制定一个合适的度量

提供这样一个度量标准。使用拉普拉斯内核卷积图像:

   1
1 -4  1
   1

并对输出使用一个健壮的最大度量,以获得一个可用于阈值化的数字。在计算拉普拉斯算子之前,尽量避免对图像进行过多的平滑处理,因为您只会发现平滑后的图像确实模糊:-)。

另一种非常简单的估计图像清晰度的方法是使用拉普拉斯(或对数)滤波器,然后简单地选择最大值。如果期望噪声(即,选择第n个最高对比度而不是最高对比度),则使用99.9%分位数等稳健度量可能更好。如果期望图像亮度变化,则还应包括预处理步骤以规范化图像亮度/对比度(例如直方图均衡化)

我已经在Mathematica中实现了Simon的建议和这个建议,并在一些测试图像上进行了尝试:

第一个测试使用具有不同内核大小的高斯滤波器模糊测试图像,然后计算模糊图像的FFT,并取90%最高频率的平均值:

testFft[img_] := Table[
  (
   blurred = GaussianFilter[img, r];
   fft = Fourier[ImageData[blurred]];
   {w, h} = Dimensions[fft];
   windowSize = Round[w/2.1];
   Mean[Flatten[(Abs[
       fft[[w/2 - windowSize ;; w/2 + windowSize, 
         h/2 - windowSize ;; h/2 + windowSize]]])]]
   ), {r, 0, 10, 0.5}]
得出对数图:

5条线代表5个测试图像,X轴代表高斯滤波器半径。图形在减少,因此FFT是一种很好的锐度度量

这是“最高对数”模糊度估计器的代码:它仅应用对数过滤器并返回过滤器结果中最亮的像素:

testLaplacian[img_] := Table[
  (
   blurred = GaussianFilter[img, r];
   Max[Flatten[ImageData[LaplacianGaussianFilter[blurred, 1]]]];
   ), {r, 0, 10, 0.5}]
得出对数图:


在这里,未模糊图像的扩散稍微好一些(2.5 vs 3.3),主要是因为该方法仅使用图像中最强的对比度,而FFT基本上是整个图像的平均值。函数的衰减速度也更快,因此设置“模糊”阈值可能更容易。

在使用自动对焦镜头时,我遇到了这组非常有用的算法。它是在MATLAB中实现的,但大多数函数很容易移植到OpenCV

它基本上是许多焦点测量算法的概览实现。如果您想阅读原始论文,代码中提供了算法作者的参考资料。Pertuz等人(SFF)在2012年发表的论文中对所有这些测量方法及其性能(应用于SFF的速度和精度)进行了详细的回顾

编辑:添加MATLAB代码以防链接死掉。

function FM = fmeasure(Image, Measure, ROI)
%This function measures the relative degree of focus of 
%an image. It may be invoked as:
%
%   FM = fmeasure(Image, Method, ROI)
%
%Where 
%   Image,  is a grayscale image and FM is the computed
%           focus value.
%   Method, is the focus measure algorithm as a string.
%           see 'operators.txt' for a list of focus 
%           measure methods. 
%   ROI,    Image ROI as a rectangle [xo yo width heigth].
%           if an empty argument is passed, the whole
%           image is processed.
%
%  Said Pertuz
%  Abr/2010


if ~isempty(ROI)
    Image = imcrop(Image, ROI);
end

WSize = 15; % Size of local window (only some operators)

switch upper(Measure)
    case 'ACMO' % Absolute Central Moment (Shirvaikar2004)
        if ~isinteger(Image), Image = im2uint8(Image);
        end
        FM = AcMomentum(Image);

    case 'BREN' % Brenner's (Santos97)
        [M N] = size(Image);
        DH = Image;
        DV = Image;
        DH(1:M-2,:) = diff(Image,2,1);
        DV(:,1:N-2) = diff(Image,2,2);
        FM = max(DH, DV);        
        FM = FM.^2;
        FM = mean2(FM);

    case 'CONT' % Image contrast (Nanda2001)
        ImContrast = inline('sum(abs(x(:)-x(5)))');
        FM = nlfilter(Image, [3 3], ImContrast);
        FM = mean2(FM);

    case 'CURV' % Image Curvature (Helmli2001)
        if ~isinteger(Image), Image = im2uint8(Image);
        end
        M1 = [-1 0 1;-1 0 1;-1 0 1];
        M2 = [1 0 1;1 0 1;1 0 1];
        P0 = imfilter(Image, M1, 'replicate', 'conv')/6;
        P1 = imfilter(Image, M1', 'replicate', 'conv')/6;
        P2 = 3*imfilter(Image, M2, 'replicate', 'conv')/10 ...
            -imfilter(Image, M2', 'replicate', 'conv')/5;
        P3 = -imfilter(Image, M2, 'replicate', 'conv')/5 ...
            +3*imfilter(Image, M2, 'replicate', 'conv')/10;
        FM = abs(P0) + abs(P1) + abs(P2) + abs(P3);
        FM = mean2(FM);

    case 'DCTE' % DCT energy ratio (Shen2006)
        FM = nlfilter(Image, [8 8], @DctRatio);
        FM = mean2(FM);

    case 'DCTR' % DCT reduced energy ratio (Lee2009)
        FM = nlfilter(Image, [8 8], @ReRatio);
        FM = mean2(FM);

    case 'GDER' % Gaussian derivative (Geusebroek2000)        
        N = floor(WSize/2);
        sig = N/2.5;
        [x,y] = meshgrid(-N:N, -N:N);
        G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
        Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
        Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
        Rx = imfilter(double(Image), Gx, 'conv', 'replicate');
        Ry = imfilter(double(Image), Gy, 'conv', 'replicate');
        FM = Rx.^2+Ry.^2;
        FM = mean2(FM);

    case 'GLVA' % Graylevel variance (Krotkov86)
        FM = std2(Image);

    case 'GLLV' %Graylevel local variance (Pech2000)        
        LVar = stdfilt(Image, ones(WSize,WSize)).^2;
        FM = std2(LVar)^2;

    case 'GLVN' % Normalized GLV (Santos97)
        FM = std2(Image)^2/mean2(Image);

    case 'GRAE' % Energy of gradient (Subbarao92a)
        Ix = Image;
        Iy = Image;
        Iy(1:end-1,:) = diff(Image, 1, 1);
        Ix(:,1:end-1) = diff(Image, 1, 2);
        FM = Ix.^2 + Iy.^2;
        FM = mean2(FM);

    case 'GRAT' % Thresholded gradient (Snatos97)
        Th = 0; %Threshold
        Ix = Image;
        Iy = Image;
        Iy(1:end-1,:) = diff(Image, 1, 1);
        Ix(:,1:end-1) = diff(Image, 1, 2);
        FM = max(abs(Ix), abs(Iy));
        FM(FM<Th)=0;
        FM = sum(FM(:))/sum(sum(FM~=0));

    case 'GRAS' % Squared gradient (Eskicioglu95)
        Ix = diff(Image, 1, 2);
        FM = Ix.^2;
        FM = mean2(FM);

    case 'HELM' %Helmli's mean method (Helmli2001)        
        MEANF = fspecial('average',[WSize WSize]);
        U = imfilter(Image, MEANF, 'replicate');
        R1 = U./Image;
        R1(Image==0)=1;
        index = (U>Image);
        FM = 1./R1;
        FM(index) = R1(index);
        FM = mean2(FM);

    case 'HISE' % Histogram entropy (Krotkov86)
        FM = entropy(Image);

    case 'HISR' % Histogram range (Firestone91)
        FM = max(Image(:))-min(Image(:));


    case 'LAPE' % Energy of laplacian (Subbarao92a)
        LAP = fspecial('laplacian');
        FM = imfilter(Image, LAP, 'replicate', 'conv');
        FM = mean2(FM.^2);

    case 'LAPM' % Modified Laplacian (Nayar89)
        M = [-1 2 -1];        
        Lx = imfilter(Image, M, 'replicate', 'conv');
        Ly = imfilter(Image, M', 'replicate', 'conv');
        FM = abs(Lx) + abs(Ly);
        FM = mean2(FM);

    case 'LAPV' % Variance of laplacian (Pech2000)
        LAP = fspecial('laplacian');
        ILAP = imfilter(Image, LAP, 'replicate', 'conv');
        FM = std2(ILAP)^2;

    case 'LAPD' % Diagonal laplacian (Thelen2009)
        M1 = [-1 2 -1];
        M2 = [0 0 -1;0 2 0;-1 0 0]/sqrt(2);
        M3 = [-1 0 0;0 2 0;0 0 -1]/sqrt(2);
        F1 = imfilter(Image, M1, 'replicate', 'conv');
        F2 = imfilter(Image, M2, 'replicate', 'conv');
        F3 = imfilter(Image, M3, 'replicate', 'conv');
        F4 = imfilter(Image, M1', 'replicate', 'conv');
        FM = abs(F1) + abs(F2) + abs(F3) + abs(F4);
        FM = mean2(FM);

    case 'SFIL' %Steerable filters (Minhas2009)
        % Angles = [0 45 90 135 180 225 270 315];
        N = floor(WSize/2);
        sig = N/2.5;
        [x,y] = meshgrid(-N:N, -N:N);
        G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
        Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
        Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
        R(:,:,1) = imfilter(double(Image), Gx, 'conv', 'replicate');
        R(:,:,2) = imfilter(double(Image), Gy, 'conv', 'replicate');
        R(:,:,3) = cosd(45)*R(:,:,1)+sind(45)*R(:,:,2);
        R(:,:,4) = cosd(135)*R(:,:,1)+sind(135)*R(:,:,2);
        R(:,:,5) = cosd(180)*R(:,:,1)+sind(180)*R(:,:,2);
        R(:,:,6) = cosd(225)*R(:,:,1)+sind(225)*R(:,:,2);
        R(:,:,7) = cosd(270)*R(:,:,1)+sind(270)*R(:,:,2);
        R(:,:,7) = cosd(315)*R(:,:,1)+sind(315)*R(:,:,2);
        FM = max(R,[],3);
        FM = mean2(FM);

    case 'SFRQ' % Spatial frequency (Eskicioglu95)
        Ix = Image;
        Iy = Image;
        Ix(:,1:end-1) = diff(Image, 1, 2);
        Iy(1:end-1,:) = diff(Image, 1, 1);
        FM = mean2(sqrt(double(Iy.^2+Ix.^2)));

    case 'TENG'% Tenengrad (Krotkov86)
        Sx = fspecial('sobel');
        Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
        Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
        FM = Gx.^2 + Gy.^2;
        FM = mean2(FM);

    case 'TENV' % Tenengrad variance (Pech2000)
        Sx = fspecial('sobel');
        Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
        Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
        G = Gx.^2 + Gy.^2;
        FM = std2(G)^2;

    case 'VOLA' % Vollath's correlation (Santos97)
        Image = double(Image);
        I1 = Image; I1(1:end-1,:) = Image(2:end,:);
        I2 = Image; I2(1:end-2,:) = Image(3:end,:);
        Image = Image.*(I1-I2);
        FM = mean2(Image);

    case 'WAVS' %Sum of Wavelet coeffs (Yang2003)
        [C,S] = wavedec2(Image, 1, 'db6');
        H = wrcoef2('h', C, S, 'db6', 1);   
        V = wrcoef2('v', C, S, 'db6', 1);   
        D = wrcoef2('d', C, S, 'db6', 1);   
        FM = abs(H) + abs(V) + abs(D);
        FM = mean2(FM);

    case 'WAVV' %Variance of  Wav...(Yang2003)
        [C,S] = wavedec2(Image, 1, 'db6');
        H = abs(wrcoef2('h', C, S, 'db6', 1));
        V = abs(wrcoef2('v', C, S, 'db6', 1));
        D = abs(wrcoef2('d', C, S, 'db6', 1));
        FM = std2(H)^2+std2(V)+std2(D);

    case 'WAVR'
        [C,S] = wavedec2(Image, 3, 'db6');
        H = abs(wrcoef2('h', C, S, 'db6', 1));   
        V = abs(wrcoef2('v', C, S, 'db6', 1));   
        D = abs(wrcoef2('d', C, S, 'db6', 1)); 
        A1 = abs(wrcoef2('a', C, S, 'db6', 1));
        A2 = abs(wrcoef2('a', C, S, 'db6', 2));
        A3 = abs(wrcoef2('a', C, S, 'db6', 3));
        A = A1 + A2 + A3;
        WH = H.^2 + V.^2 + D.^2;
        WH = mean2(WH);
        WL = mean2(A);
        FM = WH/WL;
    otherwise
        error('Unknown measure %s',upper(Measure))
end
 end
%************************************************************************
function fm = AcMomentum(Image)
[M N] = size(Image);
Hist = imhist(Image)/(M*N);
Hist = abs((0:255)-255*mean2(Image))'.*Hist;
fm = sum(Hist);
end

%******************************************************************
function fm = DctRatio(M)
MT = dct2(M).^2;
fm = (sum(MT(:))-MT(1,1))/MT(1,1);
end

%************************************************************************
function fm = ReRatio(M)
M = dct2(M);
fm = (M(1,2)^2+M(1,3)^2+M(2,1)^2+M(2,2)^2+M(3,1)^2)/(M(1,1)^2);
end
%******************************************************************
function FM=fmeasure(图像、测量、ROI)
%此函数用于测量图像的相对聚焦程度
%图像。它可以被调用为:
%
%FM=fmeasure(图像、方法、ROI)
%
%在哪里
%图像,是灰度图像,FM是计算出的
%焦点值。
%方法,是作为字符串的焦点度量算法。
%有关焦点列表,请参阅“operators.txt”
%测量方法。
%ROI,将ROI成像为矩形[xo-yo宽度高度]。
%如果传递了一个空参数,则整个
%图像被处理。
%
%佩图兹说
%Abr/2010
如果~ i为空(ROI)
图像=imcrop(图像,ROI);
结束
WSize=15;%本地窗口的大小(仅限于某些运算符)
开关上部(测量)
案例“ACMO%”绝对中心力矩(Shirvaikar2004)
如果~isinteger(图像),图像=im2uint8(图像);
结束
FM=Ac动量(图像);
案例“布伦”'%Brenner's(Santos97)
[mn]=尺寸(图像);
DH=图像;
DV=图像;
DH(1:M-2,:)=diff(图像,2,1);
DV(:,1:N-2)=diff(图像,2,2);
FM=最大值(DH,DV);
FM=FM.^2;
FM=平均值2(FM);
案例“CONT%”图像对比度(Nanda2001)
ImContrast=inline('sum(abs(x(:)-x(5))));
FM=nlfilter(图像,[3],对比度);
FM=平均值2(FM);
案例“CURV%”图像曲率(Helmli2001)
如果~isinteger(图像),图像=im2uint8(图像);
结束
M1=[-1011;-1011;-1011];
M2=[1 01;1 01;1 01];
P0=imfilter(图像,M1,‘复制’,‘conv’)/6;
P1=imfilter(图像、M1’、‘复制’、‘conv’)/6;
P2=3*imfilter(图像、M2、‘复制’、‘转换’)/10。。。
-imfilter(图像,M2',复制''conv')/5;
P3=-imfilter(图像,M2,'复制','转换')/5。。。
+3*imfilter(图像,M2,'replicate','conv')/10;
FM=abs(P0)+abs(P1)+abs(P2)+abs(P3);
FM=平均值2(FM);
案例“DCTE”%DCT能量比(Shen2006)
FM=nlfilter(图像,[8],@DCT比率);
FM=平均值2(FM);
案例“DCTR”%DCT降低的能量比(Lee2009)
FM=nlfilter(图像,[8],@ReRatio);
FM=平均值2(FM);
案例“GDER%”高斯导数(Geusebroek2000)
N=地板(WSize/2);
sig=N/2.5;
[x,y]=meshgrid(-N:N,-N:N);
G=exp(-x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
Gx=-x*G/(sig^2);Gx=Gx/总和(Gx(:);
Gy=-y*G/(sig^2);Gy=Gy/总和(Gy(:);
Rx=imfilter(双(图像)、Gx、“conv”、“replicate”);
Ry=imfilter(双重(图像),Gy,'conv','replicate');
FM=Rx.^2+Ry.^2;
FM=平均值2(FM);
案例“GLVA%”灰度方差(Krotkov86)
FM=std2(图像);
案例“GLLV%”灰度局部方差(Pech2000)
LVar=stdfilt(图像,个(WSize,WSize))。^2;
FM=std2(LVar)^2;
案例“GLVN%”规范化GLV(Santos97)
FM=std2(图像)^2/me
// OpenCV port of 'LAPM' algorithm (Nayar89)
double modifiedLaplacian(const cv::Mat& src)
{
    cv::Mat M = (Mat_<double>(3, 1) << -1, 2, -1);
    cv::Mat G = cv::getGaussianKernel(3, -1, CV_64F);

    cv::Mat Lx;
    cv::sepFilter2D(src, Lx, CV_64F, M, G);

    cv::Mat Ly;
    cv::sepFilter2D(src, Ly, CV_64F, G, M);

    cv::Mat FM = cv::abs(Lx) + cv::abs(Ly);

    double focusMeasure = cv::mean(FM).val[0];
    return focusMeasure;
}

// OpenCV port of 'LAPV' algorithm (Pech2000)
double varianceOfLaplacian(const cv::Mat& src)
{
    cv::Mat lap;
    cv::Laplacian(src, lap, CV_64F);

    cv::Scalar mu, sigma;
    cv::meanStdDev(lap, mu, sigma);

    double focusMeasure = sigma.val[0]*sigma.val[0];
    return focusMeasure;
}

// OpenCV port of 'TENG' algorithm (Krotkov86)
double tenengrad(const cv::Mat& src, int ksize)
{
    cv::Mat Gx, Gy;
    cv::Sobel(src, Gx, CV_64F, 1, 0, ksize);
    cv::Sobel(src, Gy, CV_64F, 0, 1, ksize);

    cv::Mat FM = Gx.mul(Gx) + Gy.mul(Gy);

    double focusMeasure = cv::mean(FM).val[0];
    return focusMeasure;
}

// OpenCV port of 'GLVN' algorithm (Santos97)
double normalizedGraylevelVariance(const cv::Mat& src)
{
    cv::Scalar mu, sigma;
    cv::meanStdDev(src, mu, sigma);

    double focusMeasure = (sigma.val[0]*sigma.val[0]) / mu.val[0];
    return focusMeasure;
}
@ARTICLE{Marziliano04perceptualblur,
    author = {Pina Marziliano and Frederic Dufaux and Stefan Winkler and Touradj Ebrahimi},
    title = {Perceptual blur and ringing metrics: Application to JPEG2000,” Signal Process},
    journal = {Image Commun},
    year = {2004},
    pages = {163--172} }
short GetSharpness(char* data, unsigned int width, unsigned int height)
{
    // assumes that your image is already in planner yuv or 8 bit greyscale
    IplImage* in = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,1);
    IplImage* out = cvCreateImage(cvSize(width,height),IPL_DEPTH_16S,1);
    memcpy(in->imageData,data,width*height);

    // aperture size of 1 corresponds to the correct matrix
    cvLaplace(in, out, 1);

    short maxLap = -32767;
    short* imgData = (short*)out->imageData;
    for(int i =0;i<(out->imageSize/2);i++)
    {
        if(imgData[i] > maxLap) maxLap = imgData[i];
    }

    cvReleaseImage(&in);
    cvReleaseImage(&out);
    return maxLap;
}
//Convert image using Canny
using (Image<Gray, byte> imgCanny = imgOrig.Canny(225, 175))
{
    //Count the number of pixel representing an edge
    int nCountCanny = imgCanny.CountNonzero()[0];

    //Compute a sharpness grade:
    //< 1.5 = blurred, in movement
    //de 1.5 à 6 = acceptable
    //> 6 =stable, sharp
    double dSharpness = (nCountCanny * 1000.0 / (imgCanny.Cols * imgCanny.Rows));
}
fa =  abs(fftshift(fft(sharp_img)));
fb = abs(fftshift(fft(blured_img)));

f1=20*log10(0.001+fa);
f2=20*log10(0.001+fb);

figure,imagesc(f1);title('org')
figure,imagesc(f2);title('blur')

figure,hist(f1(:),100);title('org')
figure,hist(f2(:),100);title('blur')

mf1=mean(f1(:));
mf2=mean(f2(:));

mfd1=median(f1(:));
mfd2=median(f2(:));

sf1=std(f1(:));
sf2=std(f2(:));
import cv2

image = cv2.imread("test.jpeg")
height, width = image.shape[:2]
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

def px(x, y):
    return int(gray[y, x])

sum = 0
for x in range(width-1):
    for y in range(height):
        sum += abs(px(x, y) - px(x+1, y))
for x in range(width - 1):
for x in range(0, width - 1, 10):
Mat grad;
int scale = 1;
int delta = 0;
int ddepth = CV_8U;
Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;
/// Gradient X
Sobel(matFromSensor, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
/// Gradient Y
Sobel(matFromSensor, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_x, abs_grad_x);
convertScaleAbs(grad_y, abs_grad_y);
addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
cv::Scalar mu, sigma;
cv::meanStdDev(grad, /* mean */ mu, /*stdev*/ sigma);
focusMeasure = mu.val[0] * mu.val[0];