Java 如何实现广度优先遍历?

Java 如何实现广度优先遍历?,java,breadth-first-search,Java,Breadth First Search,这就是我所拥有的。我认为预订单是一样的,并把它与深度第一 import java.util.LinkedList; import java.util.Queue; public class Exercise25_1 { public static void main(String[] args) { BinaryTree tree = new BinaryTree(new Integer[] {10, 5, 15, 12, 4, 8 }); System.out.pri

这就是我所拥有的。我认为预订单是一样的,并把它与深度第一

import java.util.LinkedList;
import java.util.Queue;

public class Exercise25_1 {
  public static void main(String[] args) {

    BinaryTree tree = new BinaryTree(new Integer[] {10, 5, 15, 12, 4, 8 });

    System.out.print("\nInorder: ");
    tree.inorder();
    System.out.print("\nPreorder: ");
    tree.preorder();
    System.out.print("\nPostorder: ");
    tree.postorder();

    //call the breadth method to test it

    System.out.print("\nBreadthFirst:");
    tree.breadth();

  }
}

class BinaryTree {
  private TreeNode root;


  /** Create a default binary tree */
  public BinaryTree() {
  }

  /** Create a binary tree from an array of objects */
  public BinaryTree(Object[] objects) {
    for (int i = 0; i < objects.length; i++) {
      insert(objects[i]);
    }
  }

  /** Search element o in this binary tree */
  public boolean search(Object o) {
    return search(o, root);
  }

  public boolean search(Object o, TreeNode root) {
    if (root == null) {
      return false;
    }
    if (root.element.equals(o)) {
      return true;
    }
    else {
      return search(o, root.left) || search(o, root.right);
    }
  }

  /** Return the number of nodes in this binary tree */
  public int size() {
    return size(root);
  }

  public int size(TreeNode root) {
    if (root == null) {
      return 0;
    }
    else {
      return 1 + size(root.left) + size(root.right);
    }
  }

  /** Return the depth of this binary tree. Depth is the
  * number of the nodes in the longest path of the tree */
  public int depth() {
    return depth(root);
  }

  public int depth(TreeNode root) {
    if (root == null) {
      return 0;
    }
    else {
      return 1 + Math.max(depth(root.left), depth(root.right));
    }
  }

  /** Insert element o into the binary tree
  * Return true if the element is inserted successfully */
  public boolean insert(Object o) {
    if (root == null) {
      root = new TreeNode(o); // Create a new root
    }
    else {
      // Locate the parent node
      TreeNode parent = null;
      TreeNode current = root;
      while (current != null) {
        if (((Comparable)o).compareTo(current.element) < 0) {
          parent = current;
          current = current.left;
        }
        else if (((Comparable)o).compareTo(current.element) > 0) {
          parent = current;
          current = current.right;
        }
        else {
          return false; // Duplicate node not inserted
        }
      }

      // Create the new node and attach it to the parent node
      if (((Comparable)o).compareTo(parent.element) < 0) {
        parent.left = new TreeNode(o);
      }
      else {
        parent.right = new TreeNode(o);
      }
    }

    return true; // Element inserted
  }

  public void breadth() {
  breadth(root);
  }

//  Implement this method to produce a breadth first

//  search traversal
  public void breadth(TreeNode root){
      if (root == null)
          return;

      System.out.print(root.element + " ");
      breadth(root.left);
      breadth(root.right);
 }


  /** Inorder traversal */
  public void inorder() {
    inorder(root);
  }

  /** Inorder traversal from a subtree */
  private void inorder(TreeNode root) {
    if (root == null) {
      return;
    }
    inorder(root.left);
    System.out.print(root.element + " ");
    inorder(root.right);
  }

  /** Postorder traversal */
  public void postorder() {
    postorder(root);
  }

  /** Postorder traversal from a subtree */
  private void postorder(TreeNode root) {
    if (root == null) {
      return;
    }
    postorder(root.left);
    postorder(root.right);
    System.out.print(root.element + " ");
  }

  /** Preorder traversal */
  public void preorder() {
    preorder(root);
  }

  /** Preorder traversal from a subtree */
  private void preorder(TreeNode root) {
    if (root == null) {
      return;
    }
    System.out.print(root.element + " ");
    preorder(root.left);
    preorder(root.right);

  }

  /** Inner class tree node */
  private class TreeNode {
    Object element;
    TreeNode left;
    TreeNode right;

    public TreeNode(Object o) {
      element = o;
    }
  }

}
import java.util.LinkedList;
导入java.util.Queue;
公开课练习25_1{
公共静态void main(字符串[]args){
BinaryTree=newbinarytree(新整数[]{10,5,15,12,4,8});
系统输出打印(“\n顺序:”);
tree.inoorder();
系统输出打印(“\n优先级:”);
tree.preorder();
系统输出打印(“\nPostorder:”);
tree.postorder();
//调用宽度方法来测试它
系统输出打印(“\nReadthFirst:”);
树的宽度();
}
}
类二叉树{
独活根;
/**创建默认的二叉树*/
公共二叉树(){
}
/**从对象数组创建二叉树*/
公共二进制树(对象[]对象){
for(int i=0;i0,则为else{
父项=当前;
current=current.right;
}
否则{
返回false;//未插入重复节点
}
}
//创建新节点并将其附加到父节点
if(((可比)o).compareTo(父元素)<0){
parent.left=新的树节点(o);
}
否则{
parent.right=新的树节点(o);
}
}
返回true;//插入的元素
}
公共空间宽度(){
宽度(根);
}
//实现此方法以首先生成宽度
//搜索遍历
公共空隙宽度(树根){
if(root==null)
返回;
System.out.print(root.element+“”);
宽度(根。左);
宽度(根,右);
}
/**有序遍历*/
公共无效序(){
顺序(根);
}
/**按顺序从子树进行遍历*/
私有void索引(树节点根){
if(root==null){
返回;
}
顺序(根。左);
System.out.print(root.element+“”);
顺序(root.right);
}
/**后序遍历*/
公众邮购无效(){
后序(根);
}
/**子树的后序遍历*/
专用无效后订单(TreeNode根){
if(root==null){
返回;
}
后序(根,左);
postorder(root.right);
System.out.print(root.element+“”);
}
/**前序遍历*/
公共无效预订单(){
前序(根);
}
/**子树的前序遍历*/
私有void预订单(树节点根){
if(root==null){
返回;
}
System.out.print(root.element+“”);
前序(根,左);
前序(root.right);
}
/**内部类树节点*/
私有类树节点{
对象元素;
左树突;
特雷诺德右翼;
公共树节点(对象o){
元素=o;
}
}
}

您似乎不是在要求实现,因此我将尝试解释该过程

使用队列。将根节点添加到队列中。运行循环,直到队列为空。在循环内部,将第一个元素出列并打印出来。然后将其所有子级添加到队列的后面(通常从左到右)

当队列为空时,应已打印出每个元素


另外,wikipedia上对宽度优先搜索有一个很好的解释:

宽度优先是一个队列,深度优先是一个堆栈

对于宽度优先,将所有子级添加到队列中,然后拉动头部并使用同一队列对其执行宽度优先搜索

对于深度优先,将所有子节点添加到堆栈中,然后使用相同的堆栈在该节点上弹出并执行深度优先。

宽度优先搜索

Queue<TreeNode> queue = new LinkedList<BinaryTree.TreeNode>() ;
public void breadth(TreeNode root) {
    if (root == null)
        return;
    queue.clear();
    queue.add(root);
    while(!queue.isEmpty()){
        TreeNode node = queue.remove();
        System.out.print(node.element + " ");
        if(node.left != null) queue.add(node.left);
        if(node.right != null) queue.add(node.right);
    }

}
Queue Queue=newlinkedlist();
公共空隙宽度(树根){
if(root==null)
返回;
queue.clear();
添加(根);
而(!queue.isEmpty()){
TreeNode节点=queue.remove();
System.out.print(node.element+“”);
如果(node.left!=null)queue.add(node.left);
如果(node.right!=null)queue.add(node.right);
}
}
//遍历
公共空间遍历()
{
if(node==null)
System.out.println(“空树”);
其他的
{
队列q=新的LinkedList();
q、 添加(节点);
while(q.peek()!=null)
{
节点温度=q.remove();
System.out.println(temp.getData());
如果(左侧温度!=null)
q、 添加(左侧温度);
如果(临时正确!=null)
q、 添加(右侧温度);
}
}
}

}

这是您编写的代码
//traverse
public void traverse()
{
    if(node == null)
        System.out.println("Empty tree");
    else
    {
        Queue<Node> q= new LinkedList<Node>();
        q.add(node);
        while(q.peek() != null)
        {
            Node temp = q.remove();
            System.out.println(temp.getData());
            if(temp.left != null)
                q.add(temp.left);
            if(temp.right != null)
                q.add(temp.right);
        }
    }
}
//  search traversal
  public void breadth(TreeNode root){
      if (root == null)
          return;

      System.out.print(root.element + " ");
      breadth(root.left);
      breadth(root.right);
 }
public static boolean BFS(ListNode n, int x){
        if(n==null){
           return false;
       }
Queue<ListNode<Integer>> q = new Queue<ListNode<Integer>>();
ListNode<Integer> tmp = new ListNode<Integer>(); 
q.enqueue(n);
tmp = q.dequeue();
if(tmp.val == x){
    return true;
}
while(tmp != null){
    for(ListNode<Integer> child: n.getChildren()){
        if(child.val == x){
            return true;
        }
        q.enqueue(child);
    }

    tmp = q.dequeue();
}
return false;
}
public void breadthFirstSearch(Node root, Consumer<String> c) {
    List<Node> queue = new LinkedList<>();

    queue.add(root);

    while (!queue.isEmpty()) {
        Node n = queue.remove(0);
        c.accept(n.value);

        if (n.left != null)
            queue.add(n.left);
        if (n.right != null)
            queue.add(n.right);
    }
}
public static class Node {
    String value;
    Node left;
    Node right;

    public Node(final String value, final Node left, final Node right) {
        this.value = value;
        this.left = left;
        this.right = right;
    }
}
    Queue<TreeNode> queue= new LinkedList<>();
    private void breadthWiseTraversal(TreeNode root) {
        if(root==null){
            return;
        }
        TreeNode temp = root;
        queue.clear();
        ((LinkedList<TreeNode>) queue).add(temp);
        while(!queue.isEmpty()){
            TreeNode ref= queue.remove();
            System.out.print(ref.data+" ");
            if(ref.left!=null) {
                ((LinkedList<TreeNode>) queue).add(ref.left);
            }
            if(ref.right!=null) {
                ((LinkedList<TreeNode>) queue).add(ref.right);
            }
        }
    }