Opencv SWT(笔划宽度转换)能帮助OCR进行屏幕截图吗?

Opencv SWT(笔划宽度转换)能帮助OCR进行屏幕截图吗?,opencv,ocr,Opencv,Ocr,我一直在努力。屏幕截图可以包含任意内容。我只想找到文本内容 如果一些非文本内容被检测为文本,这没关系。我的底线是没有遗漏任何文本内容 我发现了以下文章: 鲍里斯·爱泼斯坦、约纳坦·韦克斯勒和埃亚尔·奥菲克。IEEE国际 计算机视觉和模式识别会议,2010年 但我还没有在Windows上找到一个有效的实现。到目前为止,我只看到它用于自然场景,而不是屏幕截图。如果有人已经在其他平台上实现了它,你能用下图试试吗?这样我就可以在下定决心在Windows上实现它之前快速评估一下?谢谢 更新 来自的代

我一直在努力。屏幕截图可以包含任意内容。我只想找到文本内容

如果一些非文本内容被检测为文本,这没关系。我的底线是没有遗漏任何文本内容

我发现了以下文章:

  • 鲍里斯·爱泼斯坦、约纳坦·韦克斯勒和埃亚尔·奥菲克。IEEE国际 计算机视觉和模式识别会议,2010年
但我还没有在Windows上找到一个有效的实现。到目前为止,我只看到它用于自然场景,而不是屏幕截图。如果有人已经在其他平台上实现了它,你能用下图试试吗?这样我就可以在下定决心在Windows上实现它之前快速评估一下?谢谢


更新

来自的代码似乎没有按预期工作(至少我没有设法使其工作令人满意)

因此,我运行了实现所基于的代码,您可以找到这些代码

(更合理的)结果是:

我将留下下面的代码供将来参考


我从中修改了mex实现。 使用以下代码在图像上显示的结果是:

我会让你评估一下这是否对你有帮助。 代码如下

swt.h

#include <opencv2\opencv.hpp>
#include <vector>
#include <map>
#include <set>
#include <algorithm>

using namespace std;

namespace sw
{

#define PI 3.14159265

    struct Point2d {
        int x;
        int y;
        float SWT;
    };

    struct Point2dFloat {
        float x;
        float y;
    };

    struct Ray {
        Point2d p;
        Point2d q;
        std::vector<Point2d> points;
    };


    void strokeWidthTransform(const float * edgeImage,
        const float * gradientX,
        const float * gradientY,
        bool dark_on_light,
        float * SWTImage,
        int h, int w,
        std::vector<Ray> & rays) {
        // First pass
        float prec = .05f;
        for (int row = 0; row < h; row++){
            const float* ptr = edgeImage + row*w;
            for (int col = 0; col < w; col++){
                if (*ptr > 0) {
                    Ray r;

                    Point2d p;
                    p.x = col;
                    p.y = row;
                    r.p = p;
                    std::vector<Point2d> points;
                    points.push_back(p);

                    float curX = (float)col + 0.5f;
                    float curY = (float)row + 0.5f;
                    int curPixX = col;
                    int curPixY = row;
                    float G_x = gradientX[col + row*w];
                    float G_y = gradientY[col + row*w];
                    // normalize gradient
                    float mag = sqrt((G_x * G_x) + (G_y * G_y));
                    if (dark_on_light){
                        G_x = -G_x / mag;
                        G_y = -G_y / mag;
                    }
                    else {
                        G_x = G_x / mag;
                        G_y = G_y / mag;
                    }
                    while (true) {
                        curX += G_x*prec;
                        curY += G_y*prec;
                        if ((int)(floor(curX)) != curPixX || (int)(floor(curY)) != curPixY)     {
                            curPixX = (int)(floor(curX));
                            curPixY = (int)(floor(curY));
                            // check if pixel is outside boundary of image
                            if (curPixX < 0 || (curPixX >= w) || curPixY < 0 || (curPixY >= h)) {
                                break;
                            }
                            Point2d pnew;
                            pnew.x = curPixX;
                            pnew.y = curPixY;
                            points.push_back(pnew);

                            if (edgeImage[curPixY*w + curPixX] > 0) {
                                r.q = pnew;
                                // dot product
                                float G_xt = gradientX[curPixY*w + curPixX];
                                float G_yt = gradientY[curPixY*w + curPixX];
                                mag = sqrt((G_xt * G_xt) + (G_yt * G_yt));
                                if (dark_on_light){
                                    G_xt = -G_xt / mag;
                                    G_yt = -G_yt / mag;
                                }
                                else {
                                    G_xt = G_xt / mag;
                                    G_yt = G_yt / mag;
                                }

                                if (acos(G_x * -G_xt + G_y * -G_yt) < PI / 2.0) {
                                    float length = sqrt(((float)r.q.x - (float)r.p.x)*((float)r.q.x - (float)r.p.x) + ((float)r.q.y - (float)r.p.y)*((float)r.q.y - (float)r.p.y));
                                    for (std::vector<Point2d>::iterator pit = points.begin(); pit != points.end(); pit++) {
                                        float* pSWT = SWTImage + w * pit->y + pit->x;
                                        if (*pSWT < 0) {
                                            *pSWT = length;
                                        }
                                        else {
                                            *pSWT = std::min(length, *pSWT);
                                        }
                                    }
                                    r.points = points;
                                    rays.push_back(r);
                                }
                                break;
                            }
                        }
                    }
                }
                ptr++;
            }
        }
    }


    bool Point2dSort(const Point2d &lhs, const Point2d &rhs) {
        return lhs.SWT < rhs.SWT;
    }

    void SWTMedianFilter(float * SWTImage, int h, int w,
        std::vector<Ray> & rays, float maxWidth = -1) {
        for (std::vector<Ray>::iterator rit = rays.begin(); rit != rays.end(); rit++) {
            for (std::vector<Point2d>::iterator pit = rit->points.begin(); pit != rit->points.end(); pit++) {
                pit->SWT = SWTImage[w*pit->y + pit->x];
            }
            std::sort(rit->points.begin(), rit->points.end(), &Point2dSort);
            //std::nth_element( rit->points.begin(), rit->points.end(), rit->points.size()/2, &Point2dSort );
            float median = (rit->points[rit->points.size() / 2]).SWT;
            if (maxWidth > 0 && median >= maxWidth) {
                median = -1;
            }
            for (std::vector<Point2d>::iterator pit = rit->points.begin(); pit != rit->points.end(); pit++) {
                SWTImage[w*pit->y + pit->x] = std::min(pit->SWT, median);
            }
        }
    }

    typedef std::vector< std::set<int> > graph_t; // graph as a list of neighbors per node

    void connComp(const graph_t& g, std::vector<int>& c, int i, int l) {
        // starting from node i labe this conn-comp with label l
        if (i < 0 || i > g.size()) {
            return;
        }
        std::vector< int > stack;
        // push i
        stack.push_back(i);
        c[i] = l;
        while (!stack.empty()) {
            // pop
            i = stack.back();
            stack.pop_back();
            // go over all nieghbors
            for (std::set<int>::const_iterator it = g[i].begin(); it != g[i].end(); it++) {
                if (c[*it] < 0) {
                    stack.push_back(*it);
                    c[*it] = l;
                }
            }
        }
    }
    int findNextToLabel(const graph_t& g, const vector<int>& c) {
        for (int i = 0; i < c.size(); i++) {
            if (c[i] < 0) {
                return i;
            }
        }
        return c.size();
    }

    int connected_components(const graph_t& g, vector<int>& c) {
        // check for empty graph!
        if (g.empty()) {
            return 0;
        }
        int i = 0;
        int num_conn = 0;
        do {
            connComp(g, c, i, num_conn);
            num_conn++;
            i = findNextToLabel(g, c);
        } while (i < g.size());
        return num_conn;
    }

    std::vector< std::vector<Point2d> >
        findLegallyConnectedComponents(const float* SWTImage, int h, int w,
        std::vector<Ray> & rays) {
        std::map<int, int> Map;
        std::map<int, Point2d> revmap;
        std::vector<std::vector<Point2d> > components; // empty
        int num_vertices = 0, idx = 0;
        graph_t g;
        // Number vertices for graph.  Associate each point with number
        for (int row = 0; row < h; row++){
            for (int col = 0; col < w; col++){
                idx = col + w * row;
                if (SWTImage[idx] > 0) {
                    Map[idx] = num_vertices;
                    Point2d p;
                    p.x = col;
                    p.y = row;
                    revmap[num_vertices] = p;
                    num_vertices++;
                    std::set<int> empty;
                    g.push_back(empty);
                }
            }
        }
        if (g.empty()) {
            return components; // nothing to do with an empty graph...
        }
        for (int row = 0; row < h; row++){
            for (int col = 0; col < w; col++){
                idx = col + w * row;
                if (SWTImage[idx] > 0) {
                    // check pixel to the right, right-down, down, left-down
                    int this_pixel = Map[idx];
                    float thisVal = SWTImage[idx];
                    if (col + 1 < w) {
                        float right = SWTImage[w*row + col + 1];
                        if (right > 0 && (thisVal / right <= 3.0 || right / thisVal <= 3.0)) {
                            g[this_pixel].insert(Map[w*row + col + 1]);
                            g[Map[w*row + col + 1]].insert(this_pixel);
                            //boost::add_edge(this_pixel, map.at(row * SWTImage->width + col + 1), g);
                        }
                    }
                    if (row + 1 < h) {
                        if (col + 1 < w) {
                            float right_down = SWTImage[w*(row + 1) + col + 1];
                            if (right_down > 0 && (thisVal / right_down <= 3.0 || right_down / thisVal <= 3.0)) {
                                g[this_pixel].insert(Map[w*(row + 1) + col + 1]);
                                g[Map[w*(row + 1) + col + 1]].insert(this_pixel);
                                // boost::add_edge(this_pixel, map.at((row+1) * SWTImage->width + col + 1), g);
                            }
                        }
                        float down = SWTImage[w*(row + 1) + col];
                        if (down > 0 && (thisVal / down <= 3.0 || down / thisVal <= 3.0)) {
                            g[this_pixel].insert(Map[w*(row + 1) + col]);
                            g[Map[w*(row + 1) + col]].insert(this_pixel);
                            //boost::add_edge(this_pixel, map.at((row+1) * SWTImage->width + col), g);
                        }
                        if (col - 1 >= 0) {
                            float left_down = SWTImage[w*(row + 1) + col - 1];
                            if (left_down > 0 && (thisVal / left_down <= 3.0 || left_down / thisVal <= 3.0)) {
                                g[this_pixel].insert(Map[w*(row + 1) + col - 1]);
                                g[Map[w*(row + 1) + col - 1]].insert(this_pixel);
                                //boost::add_edge(this_pixel, map.at((row+1) * SWTImage->width + col - 1), g);
                            }
                        }
                    }
                }
            }
        }

        std::vector<int> c(num_vertices, -1);
        int num_comp = connected_components(g, c);

        components.reserve(num_comp);
        //std::cout << "Before filtering, " << num_comp << " components and " <<     num_vertices << " vertices" << std::endl;
        for (int j = 0; j < num_comp; j++) {
            std::vector<Point2d> tmp;
            components.push_back(tmp);
        }
        for (int j = 0; j < num_vertices; j++) {
            Point2d p = revmap[j];
            (components[c[j]]).push_back(p);
        }

        return components;
    }

    enum {
        EIN = 0,
        GXIN,
        GYIN,
        DOLFIN,
        MAXWIN,
        NIN
    };



    void swt_mex(const float* edgeImage, const float* gradientX, const float* gradientY, float* SWTImage, float* pComp, int* nstrokes, int w, int h, bool dark_on_light)
    {
        float maxWidth = w;

        std::vector<Ray> rays;
        strokeWidthTransform(edgeImage, gradientX, gradientY, dark_on_light, SWTImage, h, w, rays);
        SWTMedianFilter(SWTImage, h, w, rays, maxWidth);

        std::vector<std::vector<Point2d> > components = findLegallyConnectedComponents(SWTImage, h, w, rays);

        *nstrokes = components.size();

        for (int ci = 0; ci < components.size(); ci++) {
            for (std::vector<Point2d>::iterator it = components[ci].begin(); it != components[ci].end(); it++) {
                pComp[w * it->y + it->x] = ci + 1;
            }
        }
    }


    void swt(const cv::Mat1b& img, cv::Mat1f& strokes, int* nstrokes, bool dark_on_light = true)
    {
        cv::Mat1b edgeMap;
        cv::Canny(img, edgeMap, 400, 200);

        cv::Mat1f floatEdgeMap;
        edgeMap.convertTo(floatEdgeMap, CV_32F);

        cv::Mat1b blurred;
        cv::GaussianBlur(img, blurred, cv::Size(5, 5), 0.3*(2.5 - 1) + .8);

        cv::Mat1f gx, gy;
        cv::Sobel(blurred, gx, CV_32F, 1, 0);
        cv::Sobel(blurred, gy, CV_32F, 0, 1);

        cv::medianBlur(gx, gx, 3);
        cv::medianBlur(gy, gy, 3);

        cv::Mat1f swtimg(img.rows, img.cols, -1.f);
        strokes = cv::Mat1f(img.rows, img.cols, 0.f);

        swt_mex((float*)floatEdgeMap.data, (float*)gx.data, (float*)gy.data, (float*)swtimg.data, (float*)strokes.data, nstrokes, img.cols, img.rows, dark_on_light);

    }
}
#包括
#包括
#包括
#包括
#包括
使用名称空间std;
命名空间软件
{
#定义PI 3.14159265
结构点2D{
int x;
int-y;
浮子SWT;
};
结构点2dfloat{
浮动x;
浮动y;
};
结构射线{
点2dp;
点2dq;
std::向量点;
};
void strokeWidthTransform(常量浮点*边缘图像,
常量浮点*梯度,
常量浮动*梯度,
在光的映衬下,黑暗,
浮动*SWTImage,
inth,intw,
标准:矢量和射线){
//第一关
浮子压力=0.05f;
对于(int行=0;行0){
雷·r;
点2dp;
p、 x=col;
p、 y=行;
r、 p=p;
std::向量点;
点。推回(p);
浮动电流=(浮动)col+0.5f;
浮动电流=(浮动)行+0.5f;
int curPixX=col;
int curPixY=行;
浮动G_x=梯度x[col+行*w];
浮动G_y=梯度y[col+行*w];
//归一化梯度
float mag=sqrt((G_x*G_x)+(G_y*G_y));
if(暗灯亮){
G_x=-G_x/mag;
G_y=-G_y/mag;
}
否则{
G_x=G_x/mag;
G_y=G_y/mag;
}
while(true){
curX+=G_x*prec;
curY+=G_y*prec;
如果((int)(floor(curX))!=curPixX | |(int)(floor(curY))!=curPixY){
curPixX=(int)(地板(curX));
curPixY=(int)(地板(curY));
//检查像素是否在图像边界之外
如果(curPixX<0 | | | |(curPixX>=w)| | curPixY<0 | |(curPixY>=h)){
打破
}
点2D pnew;
pnew.x=curPixX;
pnew.y=curPixY;
点。推回(pnew);
如果(边缘图像[curPixY*w+curPixX]>0){
r、 q=pnew;
//点积
浮动G_xt=梯度x[curPixY*w+curPixX];
浮动G_yt=梯度y[curPixY*w+curPixX];
mag=sqrt((G_xt*G_xt)+(G_yt*G_yt));
if(暗灯亮){
G_xt=-G_xt/mag;
G_yt=-G_yt/mag;
}
否则{
G_xt=G_xt/mag;
G_yt=G_yt/mag;
}
if(acos(G_x*-G_xt+G_y*-G_yt)y+pit->x;
如果(*pSWT<0){
*pSWT=长度;
}
否则{
*pSWT=标准::最小值(长度,*pSWT);
}
}
r、 点数=点数;
射线。推回(r);
}
打破
}
}
}
}
ptr++;
}
}
}
布尔点2DSORT(常数点2D和lhs、常数点2D和rhs){
返回左S.SWT<右S.SWT;
}
真空SWTMedianFilter(浮子*SWTImage,内部h,内部w,
标准::矢量和光线,浮点最大宽度=-1){
对于(std::vector::iterator rit=rays.begin)
#include <opencv2/opencv.hpp>
#include "swt.h"
using namespace cv;

int main(int, char** argv)
{
    Mat1b img = cv::imread("path_to_image", IMREAD_GRAYSCALE);

    // Compute SWT
    Mat1f strokes;
    int nstrokes;
    sw::swt(img, strokes, &nstrokes);

    // Create color table
    vector<Vec3b> colors(nstrokes+1);
    colors[0] = Vec3b(0, 0, 0);

    RNG rng;
    for (int i = 0; i < nstrokes; ++i)
    {
        colors[i + 1] = Vec3b(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
    }

    // Colors strokes
    Mat3b coloredStrokes(strokes.size(), Vec3b(0,0,0));

    for (int r = 0; r < strokes.rows; ++r)
    {
        for (int c = 0; c < strokes.cols; ++c)
        {
            coloredStrokes(r, c) = colors[strokes(r,c)];
        }
    }

    imshow("Strokes", coloredStrokes);
    waitKey();

    return 0;
}
from swtloc import SWTLocalizer
from swtloc.utils import resize_maintinaAR

swtl = SWTLocalizer()
imgpath = rawimage_path+'so3_img1.png'
r_imgpath = rawimage_path+'so3_img11.jpg'
orig_img = cv2.imread(imgpath)
resized_img = resize_maintinaAR(orig_img, width=2.0)
print(f'Shape changed from {orig_img.shape} -> {resized_img.shape}')
cv2.imwrite(r_imgpath, resized_img)

swtl.swttransform(imgpaths=r_imgpath, save_results=True, save_rootpath='swtres/',
                  edge_func = 'ac', ac_sigma = .33, text_mode = 'lb_df',
                  gs_blurr=True, blurr_kernel = (5,5), minrsw = 3, 
                  maxCC_comppx = 10000, maxrsw = 10, max_angledev = np.pi/6, 
                  acceptCC_aspectratio = 5.0)
imgshow(swtl.swtlabelled_pruned13C)
_=cv2.imwrite(rawimage_path+'so3_img11_processed.jpg', swtl.swtlabelled_pruned13C)
min_bboxes, min_bbox_annotated = swtl.get_min_bbox(show=True, padding=10)