Python 带Numpy的外减法

Python 带Numpy的外减法,python,arrays,numpy,numpy-einsum,Python,Arrays,Numpy,Numpy Einsum,我只想做:C_I=\Sum_k(A_I-B_k)^2 我发现使用简单的for循环比使用numpy.subtract.outer的计算速度更快!无论如何,我觉得numpy.einsum将是最快的。我不太懂numpy.einsum。谁能帮帮我吗?此外,如果有人能解释如何用numpy.einsum编写由向量/矩阵组成的通用求和表达式,那就太好了 我没有在网上找到解决这个问题的方法。对不起,如果以某种方式重复 带循环的MWE和numpy.subtract.outer-- A) 带回路 B) 使用nump

我只想做:C_I=\Sum_k(A_I-B_k)^2 我发现使用简单的
for循环
比使用
numpy.subtract.outer
的计算速度更快!无论如何,我觉得
numpy.einsum
将是最快的。我不太懂numpy.einsum。谁能帮帮我吗?此外,如果有人能解释如何用
numpy.einsum
编写由向量/矩阵组成的通用求和表达式,那就太好了

我没有在网上找到解决这个问题的方法。对不起,如果以某种方式重复

带循环的MWE和
numpy.subtract.outer
--

A) 带回路

B) 使用
numpy.subtract.outer

import timeit
code1="""
import numpy as np

N=10000;

a=np.random.rand(N); b=10*(np.random.rand(N)-0.5);

def A2(x,y):
    C=np.subtract.outer(x,y);
    return np.sum(C*C, axis=1)

C2=A2(a,b)"""
elapsed_time = timeit.timeit(code1, number=10)/10
print "time=", elapsed_time
当N=10000时,循环速度变快。当N=100时,外部减法变得更快。对于N=10^5,使用8GB ram的桌面上的外部减法将面临内存问题

至少使用Numba或Fortran实现 你的两个功能都很慢。Python循环非常低效(A1),分配大型临时数组也很慢(A2和部分A1)

针对小型阵列的朴素Numba实现

import numba as nb
import numpy as np

@nb.njit(parallel=True, fastmath=True)
def A_nb_p(x,y):

    z=np.empty(x.shape[0])
    for i in nb.prange(x.shape[0]):
        TMP=0.
        for j in range(y.shape[0]):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    return z
import time
N=int(1e5)
a=np.random.rand(N)
b=10*(np.random.rand(N)-0.5)

t1=time.time()
res_1=A1(a,b)
print(time.time()-t1)
#95.30195426940918 s

t1=time.time()
res_2=A_nb_p(a,b)
print(time.time()-t1)
#0.28573083877563477 s

#A2 is too slow to measure
@nb.njit(parallel=True, fastmath=True)
def A_nb_p_2(x,y):
    blk_s=1024
    z=np.zeros(x.shape[0])
    num_blk_x=x.shape[0]//blk_s
    num_blk_y=y.shape[0]//blk_s

    for ii in nb.prange(num_blk_x):
        for jj in range(num_blk_y):
            for i in range(blk_s):
                TMP=z[ii*blk_s+i]
                for j in range(blk_s):
                    TMP+=(x[ii*blk_s+i]-y[jj*blk_s+j])**2
                z[ii*blk_s+i]=TMP

    for i in nb.prange(x.shape[0]):
        TMP=z[i]
        for j in range(num_blk_y*blk_s,y.shape[0]):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    for i in nb.prange(num_blk_x*blk_s,x.shape[0]):
        TMP=z[i]
        for j in range(num_blk_y*blk_s):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    return z
N=int(2*1e6)
a=np.random.rand(N)
b=10*(np.random.rand(N)-0.5)

t1=time.time()
res_1=A_nb_p(a,b)
print(time.time()-t1)
#298.9394392967224

t1=time.time()
res_2=A_nb_p_2(a,b)
print(time.time()-t1)
#70.12
计时

import numba as nb
import numpy as np

@nb.njit(parallel=True, fastmath=True)
def A_nb_p(x,y):

    z=np.empty(x.shape[0])
    for i in nb.prange(x.shape[0]):
        TMP=0.
        for j in range(y.shape[0]):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    return z
import time
N=int(1e5)
a=np.random.rand(N)
b=10*(np.random.rand(N)-0.5)

t1=time.time()
res_1=A1(a,b)
print(time.time()-t1)
#95.30195426940918 s

t1=time.time()
res_2=A_nb_p(a,b)
print(time.time()-t1)
#0.28573083877563477 s

#A2 is too slow to measure
@nb.njit(parallel=True, fastmath=True)
def A_nb_p_2(x,y):
    blk_s=1024
    z=np.zeros(x.shape[0])
    num_blk_x=x.shape[0]//blk_s
    num_blk_y=y.shape[0]//blk_s

    for ii in nb.prange(num_blk_x):
        for jj in range(num_blk_y):
            for i in range(blk_s):
                TMP=z[ii*blk_s+i]
                for j in range(blk_s):
                    TMP+=(x[ii*blk_s+i]-y[jj*blk_s+j])**2
                z[ii*blk_s+i]=TMP

    for i in nb.prange(x.shape[0]):
        TMP=z[i]
        for j in range(num_blk_y*blk_s,y.shape[0]):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    for i in nb.prange(num_blk_x*blk_s,x.shape[0]):
        TMP=z[i]
        for j in range(num_blk_y*blk_s):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    return z
N=int(2*1e6)
a=np.random.rand(N)
b=10*(np.random.rand(N)-0.5)

t1=time.time()
res_1=A_nb_p(a,b)
print(time.time()-t1)
#298.9394392967224

t1=time.time()
res_2=A_nb_p_2(a,b)
print(time.time()-t1)
#70.12
如上所述,这在较大的阵列上是一个幼稚的实现,因为Numba无法按块进行计算,这会导致大量缓存未命中,因此性能较差。一些Fortran或C编译器应该至少能够自动执行以下优化(分块计算)

大型阵列的实施

import numba as nb
import numpy as np

@nb.njit(parallel=True, fastmath=True)
def A_nb_p(x,y):

    z=np.empty(x.shape[0])
    for i in nb.prange(x.shape[0]):
        TMP=0.
        for j in range(y.shape[0]):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    return z
import time
N=int(1e5)
a=np.random.rand(N)
b=10*(np.random.rand(N)-0.5)

t1=time.time()
res_1=A1(a,b)
print(time.time()-t1)
#95.30195426940918 s

t1=time.time()
res_2=A_nb_p(a,b)
print(time.time()-t1)
#0.28573083877563477 s

#A2 is too slow to measure
@nb.njit(parallel=True, fastmath=True)
def A_nb_p_2(x,y):
    blk_s=1024
    z=np.zeros(x.shape[0])
    num_blk_x=x.shape[0]//blk_s
    num_blk_y=y.shape[0]//blk_s

    for ii in nb.prange(num_blk_x):
        for jj in range(num_blk_y):
            for i in range(blk_s):
                TMP=z[ii*blk_s+i]
                for j in range(blk_s):
                    TMP+=(x[ii*blk_s+i]-y[jj*blk_s+j])**2
                z[ii*blk_s+i]=TMP

    for i in nb.prange(x.shape[0]):
        TMP=z[i]
        for j in range(num_blk_y*blk_s,y.shape[0]):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    for i in nb.prange(num_blk_x*blk_s,x.shape[0]):
        TMP=z[i]
        for j in range(num_blk_y*blk_s):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    return z
N=int(2*1e6)
a=np.random.rand(N)
b=10*(np.random.rand(N)-0.5)

t1=time.time()
res_1=A_nb_p(a,b)
print(time.time()-t1)
#298.9394392967224

t1=time.time()
res_2=A_nb_p_2(a,b)
print(time.time()-t1)
#70.12
计时

import numba as nb
import numpy as np

@nb.njit(parallel=True, fastmath=True)
def A_nb_p(x,y):

    z=np.empty(x.shape[0])
    for i in nb.prange(x.shape[0]):
        TMP=0.
        for j in range(y.shape[0]):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    return z
import time
N=int(1e5)
a=np.random.rand(N)
b=10*(np.random.rand(N)-0.5)

t1=time.time()
res_1=A1(a,b)
print(time.time()-t1)
#95.30195426940918 s

t1=time.time()
res_2=A_nb_p(a,b)
print(time.time()-t1)
#0.28573083877563477 s

#A2 is too slow to measure
@nb.njit(parallel=True, fastmath=True)
def A_nb_p_2(x,y):
    blk_s=1024
    z=np.zeros(x.shape[0])
    num_blk_x=x.shape[0]//blk_s
    num_blk_y=y.shape[0]//blk_s

    for ii in nb.prange(num_blk_x):
        for jj in range(num_blk_y):
            for i in range(blk_s):
                TMP=z[ii*blk_s+i]
                for j in range(blk_s):
                    TMP+=(x[ii*blk_s+i]-y[jj*blk_s+j])**2
                z[ii*blk_s+i]=TMP

    for i in nb.prange(x.shape[0]):
        TMP=z[i]
        for j in range(num_blk_y*blk_s,y.shape[0]):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    for i in nb.prange(num_blk_x*blk_s,x.shape[0]):
        TMP=z[i]
        for j in range(num_blk_y*blk_s):
            TMP+=(x[i]-y[j])**2
        z[i]=TMP

    return z
N=int(2*1e6)
a=np.random.rand(N)
b=10*(np.random.rand(N)-0.5)

t1=time.time()
res_1=A_nb_p(a,b)
print(time.time()-t1)
#298.9394392967224

t1=time.time()
res_2=A_nb_p_2(a,b)
print(time.time()-t1)
#70.12

einsum
是矩阵乘积的推广。对于一组通用尺寸,is将对所选尺寸执行乘积之和。换言之,它是
C \=求和?A?*B?
。谢谢!我还发现,
einsum
的主要目的是乘法。但是我们仍然可以用它做上面的求和吗?如果没有,这些情况下的优化解决方案是什么for循环与C相比速度非常慢。数组
A
B
的典型大小是什么?您
看到的
循环比使用
subtract.outer
快?哪里你能示范一下吗?我还将使用广播测试
外部
上的变体。对于我的情况,大小为10^8。但是我必须重复这几次计算,所以速度很重要。有趣的事实:使用
numba
后,风扇的声音太大,让我担心代码可能会破坏电脑。我只使用8gb的ram!