Python 二项分布模拟

Python 二项分布模拟,python,random,probability,montecarlo,Python,Random,Probability,Montecarlo,假设A队和B队正在进行一系列游戏,第一个 赢得4场比赛的球队赢得了系列赛。假设A队有55% 赢得每场比赛的机会以及每场比赛的结果 独立的 (a) a队赢得系列赛的概率是多少?发表 准确的结果并通过仿真验证 (b) 预计玩的游戏数是多少?确切地说 通过仿真验证了该方法的有效性 (c) 考虑到A队,预计的比赛次数是多少 赢得系列赛?给出了精确的结果,并通过仿真进行了验证 (d) 现在假设我们只知道A队更有可能获胜 每个游戏,但不知道确切的概率。如果最 可能玩的游戏数是5,这意味着什么 A队赢得每场比

假设A队和B队正在进行一系列游戏,第一个 赢得4场比赛的球队赢得了系列赛。假设A队有55% 赢得每场比赛的机会以及每场比赛的结果 独立的

(a) a队赢得系列赛的概率是多少?发表 准确的结果并通过仿真验证

(b) 预计玩的游戏数是多少?确切地说 通过仿真验证了该方法的有效性

(c) 考虑到A队,预计的比赛次数是多少 赢得系列赛?给出了精确的结果,并通过仿真进行了验证

(d) 现在假设我们只知道A队更有可能获胜 每个游戏,但不知道确切的概率。如果最 可能玩的游戏数是5,这意味着什么 A队赢得每场比赛的概率是多少

这就是我所做的,但没有得到它…需要一些输入。多谢各位

import numpy as np

probs = np.array([.55 ,.45])
nsims = 500000

chance = np.random.uniform(size=(nsims, 7))

teamAWins = (chance > probs[None, :]).astype('i4')
teamBWins = 1 - teamAWins

teamAwincount = {}
teamBwincount = {}
for ngames in range(4, 8):
    afilt = teamAWins[:, :ngames].sum(axis=1) == 4
    bfilt = teamBWins[:, :ngames].sum(axis=1) == 4

    teamAwincount[ngames] = afilt.sum()
    teamBwincount[ngames] = bfilt.sum()

    teamAWins = teamAWins[~afilt]
    teamBWins = teamBWins[~bfilt]

teamAwinprops = {k : 1. * count/nsims for k, count in teamAwincount.iteritems()}
teamBwinprops = {k : 1. * count/nsims for k, count in teamBwincount.iteritems()}

好的,这是让你开始的想法和代码

这是我认为是,这是很容易实现,并计算概率为最喜欢的和落后的

有了这些代码,就定义了一整套事件,概率之和正好为1。因此,您可以:

  • 得到准确的答案
  • 根据概率检查模拟
  • 模拟代码为多个事件和单事件模拟器添加了计数器。到目前为止,它的概率似乎与 负二项公式

    代码,Python 3.8 x64 Win10

    import numpy as np
    import scipy.special
    
    # Negative Binomial as defined in
    # https://mathworld.wolfram.com/NegativeBinomialDistribution.html
    def P(x, r, p):
        return scipy.special.comb(x+r-1, r-1)*p**r*(1.0-p)**x
    
    def single_event(p, rng):
        """
        Simulates single up-to-4-wins event,
        returns who won and how many opponent got
        """
        f = 0
        u = 0
        while True:
            if rng.random() < p:
                f += 1
                if f == 4:
                    return (True,u) # favorite won
            else:
                u += 1
                if u == 4:
                    return (False,f) # underdog won
    
    def sample(p, rng, N):
        """
        Simulate N events and count all possible outcomes
        """
    
        f = np.array([0, 0, 0, 0], dtype=np.float64) # favorite counter
        u = np.array([0, 0, 0, 0], dtype=np.float64) # underdog counter
    
        for _ in range(0, N):
            w, i = single_event(p, rng)
            if w:
                f[i] += 1
            else:
                u[i] += 1
    
        return (f/float(N), u/float(N)) # normalization
    
    def expected_nof_games(p, rng, N):
        """
        Simulate N events and computes expected number of games
        """
    
        Ng = 0
        for _ in range(0, N):
            w, i = single_event(p, rng)
    
            Ng += 4 + i # 4 games won by winner and i by loser
    
        return float(Ng)/float(N)
    
    
    p = 0.55
    
    # favorite
    p04 = P(0, 4, p)
    p14 = P(1, 4, p)
    p24 = P(2, 4, p)
    p34 = P(3, 4, p)
    
    print(p04, p14, p24, p34, p04+p14+p24+p34)
    
    # underdog
    x04 = P(0, 4, 1.0-p)
    x14 = P(1, 4, 1.0-p)
    x24 = P(2, 4, 1.0-p)
    x34 = P(3, 4, 1.0-p)
    print(x04, x14, x24, x34, x04+x14+x24+x34)
    
    # total probability
    print(p04+p14+p24+p34+x04+x14+x24+x34)
    
    # simulation of the games
    rng = np.random.default_rng()
    f, u = sample(p, rng, 200000)
    print(f)
    print(u)
    
    # compute expected number of games
    
    print("expected number of games")
    E_ng = 4*p04 + 5*p14 + 6*p24 + 7*p34 + 4*x04 + 5*x14 + 6*x24 + 7*x34
    print(E_ng)
    # same result from Monte Carlo
    print(expected_nof_games(p, rng, 200000))
    
    将numpy导入为np
    进口特殊商品
    #中定义的负二项式
    # https://mathworld.wolfram.com/NegativeBinomialDistribution.html
    def P(x,r,P):
    返回scipy特殊梳(x+r-1,r-1)*p**r*(1.0-p)**x
    def单_事件(p、rng):
    """
    模拟单个最多4胜事件,
    返回谁赢了以及有多少对手赢了
    """
    f=0
    u=0
    尽管如此:
    如果rng.random()
    好的,下面是让您开始的想法和代码

    这是我认为是,这是很容易实现,并计算概率为最喜欢的和落后的

    有了这些代码,就定义了一整套事件,概率之和正好为1。因此,您可以:

  • 得到准确的答案
  • 根据概率检查模拟
  • 模拟代码为多个事件和单事件模拟器添加了计数器。到目前为止,它的概率似乎与 负二项公式

    代码,Python 3.8 x64 Win10

    import numpy as np
    import scipy.special
    
    # Negative Binomial as defined in
    # https://mathworld.wolfram.com/NegativeBinomialDistribution.html
    def P(x, r, p):
        return scipy.special.comb(x+r-1, r-1)*p**r*(1.0-p)**x
    
    def single_event(p, rng):
        """
        Simulates single up-to-4-wins event,
        returns who won and how many opponent got
        """
        f = 0
        u = 0
        while True:
            if rng.random() < p:
                f += 1
                if f == 4:
                    return (True,u) # favorite won
            else:
                u += 1
                if u == 4:
                    return (False,f) # underdog won
    
    def sample(p, rng, N):
        """
        Simulate N events and count all possible outcomes
        """
    
        f = np.array([0, 0, 0, 0], dtype=np.float64) # favorite counter
        u = np.array([0, 0, 0, 0], dtype=np.float64) # underdog counter
    
        for _ in range(0, N):
            w, i = single_event(p, rng)
            if w:
                f[i] += 1
            else:
                u[i] += 1
    
        return (f/float(N), u/float(N)) # normalization
    
    def expected_nof_games(p, rng, N):
        """
        Simulate N events and computes expected number of games
        """
    
        Ng = 0
        for _ in range(0, N):
            w, i = single_event(p, rng)
    
            Ng += 4 + i # 4 games won by winner and i by loser
    
        return float(Ng)/float(N)
    
    
    p = 0.55
    
    # favorite
    p04 = P(0, 4, p)
    p14 = P(1, 4, p)
    p24 = P(2, 4, p)
    p34 = P(3, 4, p)
    
    print(p04, p14, p24, p34, p04+p14+p24+p34)
    
    # underdog
    x04 = P(0, 4, 1.0-p)
    x14 = P(1, 4, 1.0-p)
    x24 = P(2, 4, 1.0-p)
    x34 = P(3, 4, 1.0-p)
    print(x04, x14, x24, x34, x04+x14+x24+x34)
    
    # total probability
    print(p04+p14+p24+p34+x04+x14+x24+x34)
    
    # simulation of the games
    rng = np.random.default_rng()
    f, u = sample(p, rng, 200000)
    print(f)
    print(u)
    
    # compute expected number of games
    
    print("expected number of games")
    E_ng = 4*p04 + 5*p14 + 6*p24 + 7*p34 + 4*x04 + 5*x14 + 6*x24 + 7*x34
    print(E_ng)
    # same result from Monte Carlo
    print(expected_nof_games(p, rng, 200000))
    
    将numpy导入为np
    进口特殊商品
    #中定义的负二项式
    # https://mathworld.wolfram.com/NegativeBinomialDistribution.html
    def P(x,r,P):
    返回scipy特殊梳(x+r-1,r-1)*p**r*(1.0-p)**x
    def单_事件(p、rng):
    """
    模拟单个最多4胜事件,
    返回谁赢了以及有多少对手赢了
    """
    f=0
    u=0
    尽管如此:
    如果rng.random()