Python numpy/scipy中非线性函数的数值梯度

Python numpy/scipy中非线性函数的数值梯度,python,numpy,optimization,scipy,numerical-methods,Python,Numpy,Optimization,Scipy,Numerical Methods,我试图用numpy实现一个数值梯度计算,作为cyipot中梯度的回调函数。我对numpy梯度函数的理解是,它应该返回在基于a的点上计算的梯度 我不明白如何用这个模块实现非线性函数的梯度。给出的样本问题似乎是一个线性函数 >>> f = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) >>> np.gradient(f) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >

我试图用numpy实现一个数值梯度计算,作为cyipot中梯度的回调函数。我对numpy梯度函数的理解是,它应该返回在基于a的点上计算的梯度

我不明白如何用这个模块实现非线性函数的梯度。给出的样本问题似乎是一个线性函数

>>> f = np.array([1, 2, 4, 7, 11, 16], dtype=np.float)
>>> np.gradient(f)
array([ 1. ,  1.5,  2.5,  3.5,  4.5,  5. ])
>>> np.gradient(f, 2)
array([ 0.5 ,  0.75,  1.25,  1.75,  2.25,  2.5 ])
我的代码片段如下所示:

import numpy as np

# Hock & Schittkowski test problem #40
x = np.mgrid[0.75:0.85:0.01, 0.75:0.8:0.01, 0.75:0.8:0.01, 0.75:0.8:0.01]
# target is evaluation at x = [0.8, 0.8, 0.8, 0.8]
f = -x[0] * x[1] * x[2] * x[3]
g = np.gradient(f)

print g
另一个缺点是我必须在几个点上计算x(它在几个点上返回梯度)
在numpy/scipy中,是否有更好的选项可以在单个点对梯度进行数值计算,以便我可以将其作为回调函数来实现?

我认为您对什么是数学函数及其数值实现有某种误解

您应该将您的功能定义为:

def func(x1, x2, x3, x4):
    return -x1*x2*x3*x4
现在,您需要在特定的点上评估函数,这可以使用您提供的
np.mgrid
来完成

如果要计算梯度,请使用
copy.misc.derivative
()(注意dx的默认参数通常不好,请将其更改为
1e-5
。数值计算中线性梯度和非线性梯度没有区别,只是对于非线性函数,梯度在任何地方都不相同

你所做的是使用
np。gradient
实际上是从数组中的点计算梯度,函数的定义被
f
的定义所隐藏,因此不允许在不同的点上进行多个梯度计算。同样,使用你的方法使你依赖于离散化步骤。

Fi首先,一些警告:
  • 数值优化很难做对
  • 这是一个非常复杂的软件
    • 将ipopt与数值微分相结合听起来像是自找麻烦,但这当然取决于你的问题
    • ipopt几乎总是基于而不是基于
还有一些:
  • 由于这是一项复杂的任务,而且python+ipopt的状态不如其他一些语言(例如(+)中的状态好,因此需要做一些工作
还有一些选择:
  • 用于包装ipopt并具有自动区分功能
  • 用于包装ipopt并具有自动区分功能
  • 用于自动计算numpy代码子集上的渐变
    • 然后使用cyipot添加这些

  • 它可以为你做任何事(SLSQP可以使用等式和不等式约束;只使用COBYLA不等式约束,其中通过
    x>=y
    +
    x模拟等式约束,感谢详细的响应!在使用numdifftools进行了一些实验并正确编写了梯度和雅可比矩阵的回调后,我能够得到与您相同的结果。)(仍然省略Hessian计算)。但是,我注意到结果与显式计算梯度和雅可比矩阵时的结果不同。我得到
    x=array([0.75487767,0.75487765,0.4950983,0.86883695])
    。我猜这是使用数值微分的一个陷阱。这需要进行分析。当存在唯一的解决方案时,不应该发生这种情况(应该是这样的;我提到了一个可能的问题和一个要调整的参数)!在定义这些库时,人们经常会犯错误。不确定您是否犯了错误,但我只是想提一下。您的退出状态是否正常?我的输出与您的输出相同。我收到的唯一警告与缺少库有关:
    未能加载'libmetis.so'-使用fallback AMD code
    此警告仅涉及性能。好吧……鉴于这些信息我们没有太多要分析的内容。好的,进一步检查,我的显式雅可比计算中有一个输入错误。现在我对两种方法都有相同的结果,根据
    import numpy as np
    import scipy.sparse as sps
    import ipopt
    from scipy.optimize import approx_fprime
    
    
    class Problem40(object):
        """ # Hock & Schittkowski test problem #40
                Basic structure  follows:
                - cyipopt example from https://pythonhosted.org/ipopt/tutorial.html#defining-the-problem
                - which follows ipopt's docs from: https://www.coin-or.org/Ipopt/documentation/node22.html
                Changes:
                - numerical-diff using scipy for function & constraints
                - removal of hessian-calculation
                  - we will use limited-memory approximation
                    - ipopt docs: https://www.coin-or.org/Ipopt/documentation/node31.html
                  - (because i'm too lazy to reason about the math; lagrange and co.)
        """
        def __init__(self):
            self.num_diff_eps = 1e-8  # maybe tuning needed!
    
        def objective(self, x):
            # callback for objective
            return -np.prod(x)  # -x1 x2 x3 x4
    
        def constraint_0(self, x):
            return np.array([x[0]**3 + x[1]**2 -1])
    
        def constraint_1(self, x):
            return np.array([x[0]**2 * x[3] - x[2]])
    
        def constraint_2(self, x):
            return np.array([x[3]**2 - x[1]])
    
        def constraints(self, x):
            # callback for constraints
            return np.concatenate([self.constraint_0(x),
                                   self.constraint_1(x),
                                   self.constraint_2(x)])
    
        def gradient(self, x):
            # callback for gradient
            return approx_fprime(x, self.objective, self.num_diff_eps)
    
        def jacobian(self, x):
            # callback for jacobian
            return np.concatenate([
                approx_fprime(x, self.constraint_0, self.num_diff_eps),
                approx_fprime(x, self.constraint_1, self.num_diff_eps),
                approx_fprime(x, self.constraint_2, self.num_diff_eps)])
    
        def hessian(self, x, lagrange, obj_factor):
            return False  # we will use quasi-newton approaches to use hessian-info
    
        # progress callback
        def intermediate(
                self,
                alg_mod,
                iter_count,
                obj_value,
                inf_pr,
                inf_du,
                mu,
                d_norm,
                regularization_size,
                alpha_du,
                alpha_pr,
                ls_trials
                ):
    
            print("Objective value at iteration #%d is - %g" % (iter_count, obj_value))
    
    # Remaining problem definition; still following official source:
    # http://www.ai7.uni-bayreuth.de/test_problem_coll.pdf
    
    # start-point -> infeasible
    x0 = [0.8, 0.8, 0.8, 0.8]
    
    # variable-bounds -> empty => np.inf-approach deviates from cyipopt docs!
    lb = [-np.inf, -np.inf, -np.inf, -np.inf]
    ub = [np.inf, np.inf, np.inf, np.inf]
    
    # constraint bounds -> c == 0 needed -> both bounds = 0
    cl = [0, 0, 0]
    cu = [0, 0, 0]
    
    nlp = ipopt.problem(
                n=len(x0),
                m=len(cl),
                problem_obj=Problem40(),
                lb=lb,
                ub=ub,
                cl=cl,
                cu=cu
                )
    
    # IMPORTANT: need to use limited-memory / lbfgs here as we didn't give a valid hessian-callback
    nlp.addOption(b'hessian_approximation', b'limited-memory')
    x, info = nlp.solve(x0)
    print(x)
    print(info)
    
    # CORRECT RESULT & SUCCESSFUL STATE
    
    ******************************************************************************
    This program contains Ipopt, a library for large-scale nonlinear optimization.
     Ipopt is released as open source code under the Eclipse Public License (EPL).
             For more information visit http://projects.coin-or.org/Ipopt
    ******************************************************************************
    
    This is Ipopt version 3.12.8, running with linear solver mumps.
    NOTE: Other linear solvers might be more efficient (see Ipopt documentation).
    
    Number of nonzeros in equality constraint Jacobian...:       12
    Number of nonzeros in inequality constraint Jacobian.:        0
    Number of nonzeros in Lagrangian Hessian.............:        0
    
    Total number of variables............................:        4
                         variables with only lower bounds:        0
                    variables with lower and upper bounds:        0
                         variables with only upper bounds:        0
    Total number of equality constraints.................:        3
    Total number of inequality constraints...............:        0
            inequality constraints with only lower bounds:        0
       inequality constraints with lower and upper bounds:        0
            inequality constraints with only upper bounds:        0
    
    Objective value at iteration #0 is - -0.4096
    iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
       0 -4.0960000e-01 2.88e-01 2.53e-02   0.0 0.00e+00    -  0.00e+00 0.00e+00   0
    Objective value at iteration #1 is - -0.255391
       1 -2.5539060e-01 1.28e-02 2.98e-01 -11.0 2.51e-01    -  1.00e+00 1.00e+00h  1
    Objective value at iteration #2 is - -0.249299
       2 -2.4929898e-01 8.29e-05 3.73e-01 -11.0 7.77e-03    -  1.00e+00 1.00e+00h  1
    Objective value at iteration #3 is - -0.25077
       3 -2.5076955e-01 1.32e-03 3.28e-01 -11.0 2.46e-02    -  1.00e+00 1.00e+00h  1
    Objective value at iteration #4 is - -0.250025
       4 -2.5002535e-01 4.06e-05 1.93e-02 -11.0 4.65e-03    -  1.00e+00 1.00e+00h  1
    Objective value at iteration #5 is - -0.25
       5 -2.5000038e-01 6.57e-07 1.70e-04 -11.0 5.46e-04    -  1.00e+00 1.00e+00h  1
    Objective value at iteration #6 is - -0.25
       6 -2.5000001e-01 2.18e-08 2.20e-06 -11.0 9.69e-05    -  1.00e+00 1.00e+00h  1
    Objective value at iteration #7 is - -0.25
       7 -2.5000000e-01 3.73e-12 4.42e-10 -11.0 1.27e-06    -  1.00e+00 1.00e+00h  1
    
    Number of Iterations....: 7
    
                                       (scaled)                 (unscaled)
    Objective...............:  -2.5000000000225586e-01   -2.5000000000225586e-01
    Dual infeasibility......:   4.4218750883118219e-10    4.4218750883118219e-10
    Constraint violation....:   3.7250202922223252e-12    3.7250202922223252e-12
    Complementarity.........:   0.0000000000000000e+00    0.0000000000000000e+00
    Overall NLP error.......:   4.4218750883118219e-10    4.4218750883118219e-10
    
    
    Number of objective function evaluations             = 8
    Number of objective gradient evaluations             = 8
    Number of equality constraint evaluations            = 8
    Number of inequality constraint evaluations          = 0
    Number of equality constraint Jacobian evaluations   = 8
    Number of inequality constraint Jacobian evaluations = 0
    Number of Lagrangian Hessian evaluations             = 0
    Total CPU secs in IPOPT (w/o function evaluations)   =      0.016
    Total CPU secs in NLP function evaluations           =      0.000
    
    EXIT: Optimal Solution Found.
    [ 0.79370053  0.70710678  0.52973155  0.84089641]
    {'x': array([ 0.79370053,  0.70710678,  0.52973155,  0.84089641]), 'g': array([  3.72502029e-12,  -3.93685085e-13,   5.86974913e-13]), 'obj_val': -0.25000000000225586, 'mult_g': array([ 0.49999999, -0.47193715,  0.35355339]), 'mult_x_L': array([ 0.,  0.,  0.,  0.]), 'mult_x_U': array([ 0.,  0.,  0.,  0.]), 'status': 0, 'status_msg': b'Algorithm terminated successfully at a locally optimal point, satisfying the convergence tolerances (can be specified by options).'}