R 为什么match.call有用?

R 为什么match.call有用?,r,call,R,Call,在一些R函数的主体中,例如lm我看到了对match.call函数的调用。正如它的帮助页面所说,当在函数中使用时,match.call返回一个指定参数名的调用;这对于将大量参数传递给另一个函数很有用 例如,在lm函数中,我们看到对函数model.frame的调用 function (formula, data, subset, weights, na.action, method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE, sin

在一些R函数的主体中,例如
lm
我看到了对
match.call
函数的调用。正如它的帮助页面所说,当在函数中使用时,
match.call
返回一个指定参数名的调用;这对于将大量参数传递给另一个函数很有用

例如,在
lm
函数中,我们看到对函数
model.frame
的调用

function (formula, data, subset, weights, na.action, method = "qr", 
model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, 
contrasts = NULL, offset, ...) 
{
  cl <- match.call()
  mf <- match.call(expand.dots = FALSE)
  m <- match(c("formula", "data", "subset", "weights", "na.action", 
      "offset"), names(mf), 0L)
  mf <- mf[c(1L, m)]

  mf$drop.unused.levels <- TRUE
  mf[[1L]] <- quote(stats::model.frame)
  mf <- eval(mf, parent.frame())
  ...

(请注意,
match.call
还有另一个我没有讨论的用途,将调用存储在结果对象中。)

这里相关的一个原因是,
match.call
捕获调用的语言而不计算它,在这种情况下,它允许
lm
将一些“缺少的”变量视为“可选的”。考虑:

lm(x ~ y, data.frame(x=1:10, y=runif(10)))
Vs:

match.call
根本不涉及缺少的参数


您可以争辩说,可选参数应该通过默认值显式地成为可选的,但这里并不是这样。

下面是一个示例。在其中,calc_1是一个包含大量数值参数的函数,这些数值参数需要相加和相乘。它将这项工作委托给calc_2,calc_2是一个接受大多数参数的辅助函数。但是calc_2还需要一些额外的参数(q到t),calc_1无法从自己的实际参数中提供这些参数。相反,它将它们作为附加项传递

如果编写对calc_2的调用以显示calc_1通过它的所有内容,那么它将是非常可怕的。因此,相反,我们假设如果calc_1和calc_2共享一个形式参数,它们将给它起相同的名字。这使得编写一个调用者成为可能,该调用者计算出calc_1可以传递给calc_2的参数,构造一个这样做的调用,并输入额外的值来完成它。下面代码中的注释应该说明这一点

顺便说一句,库“tidyverse”仅用于%>%和str_c(我用它定义了calc_2),库“assertthat”用于一个断言。(虽然在一个现实的程序中,我会加入断言来检查参数。)

以下是输出:

> calc_1( a=1, b=11, c=2, d=22, e=3, f=33, g=4, h=44, i=5, j=55, k=6
+       , l=66, m=7, n=77, o=8, p=88 
+       )
[1] "87654321QRST"
下面是代码:

library( tidyverse )
library( rlang )
library( assertthat )


`%(%` <- call_with_extras
#
# This is the operator for calling
# a function with arguments passed
# from its parent, supplemented 
# with extras. See call_with_extras()
# below.


# A function with a very long
# argument list. It wants to call
# a related function which takes
# most of these arguments and
# so has a long argument list too.
# The second function takes some
# extra arguments.
#
calc_1 <- function( a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p )
{
  calc_2 %(% list( t = "T", q = "Q", s = "S", r = "R" )
  #
  # Call it with those extras, passing 
  # all the others that calc_2() needs
  # as well. %(% is my function for
  # doing so: see below.
}


# The function that we call above. It
# uses its own arguments q to t , as
# well as those from calc_1() .
#
calc_2 <- function( a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t )
{
  ( a + c * 10 + e * 100 + g * 1000 + i * 10000 + k * 100000 +
  m * 1000000 + o * 10000000 ) %>%
  str_c( q, r, s, t )
} 


# Calls function f2 . Passes f2 whichever
# arguments it needs from its caller. 
# Corresponding formals should have the
# same name in both. Also passes f2 extra
# arguments from the named list extra. 
# The names should have the same names as
# corresponding formals of f2 .
#
call_with_extras <- function( f2, extras )
{   
  f1_call <- match.call( sys.function(1), sys.call(1) )  
  # A call object.

  f1_actuals <- as.list( f1_call %>% tail(-1) ) 
  # Named list of f1's actuals.

  f1_formals <- names( f1_actuals )
  # Names of f1's formals.

  f2_formals <- names( formals( f2 ) )
  # Names of f2's formals.

  f2_formals_from_f1 <- intersect( f2_formals, f1_formals )
  # Names of f2's formals which f1 can supply.

  f2_formals_not_from_f1 <- setdiff( f2_formals, f1_formals )
  # Names of f2's formals which f1 can't supply.

  extra_formals <- names( extras ) 
  # Names of f2's formals supplied as extras.

  assert_that( setequal( extra_formals, f2_formals_not_from_f1 ) )
  # The last two should be equal.

  f2_actuals_from_f1 <- f1_actuals[ f2_formals_from_f1 ]
  # List of actuals which f1 can supply to f2.

  f2_actuals <- append( f2_actuals_from_f1, extras )
  # All f2's actuals.

  f2_call <- call2( f2, !!! f2_actuals )
  # Call to f2.

  eval( f2_call )
  # Run it.
}


# Test it.
#
calc_1( a=1, b=11, c=2, d=22, e=3, f=33, g=4, h=44, i=5, j=55, k=6
      , l=66, m=7, n=77, o=8, p=88 
      )
库(tidyverse)
图书馆(rlang)
图书馆(资产)

`%(``首先,你不必把这些都写出来。你可以一次传递所有的参数,比如
f Fair ough,我想你也可以做反向参数切片。
f@Usobi:Is
match.call()
在以下意义上更为健壮?如果使用
,则不知道传入了哪些参数,最终可能会传入不希望传入的内容或以意外方式破坏内容。另一方面,如果显式重复参数名称以传递它们,则这将使代码更难编写如果更改函数参数定义,则进行重构。@RichScriven但要小心!
f
debug(lm2)
lm2(x ~ y, data.frame(x=1:10, y=runif(10)))
## debugging in: lm2(x ~ y, data.frame(x = 1:10, y = runif(10)))
## debug at #5: {
##     mf <- model.frame(formula = formula, data = data, subset = subset,
##         weights = weights)
## }
Browse[2]> match.call()
## lm2(formula = x ~ y, data = data.frame(x = 1:10, y = runif(10)))
> calc_1( a=1, b=11, c=2, d=22, e=3, f=33, g=4, h=44, i=5, j=55, k=6
+       , l=66, m=7, n=77, o=8, p=88 
+       )
[1] "87654321QRST"
library( tidyverse )
library( rlang )
library( assertthat )


`%(%` <- call_with_extras
#
# This is the operator for calling
# a function with arguments passed
# from its parent, supplemented 
# with extras. See call_with_extras()
# below.


# A function with a very long
# argument list. It wants to call
# a related function which takes
# most of these arguments and
# so has a long argument list too.
# The second function takes some
# extra arguments.
#
calc_1 <- function( a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p )
{
  calc_2 %(% list( t = "T", q = "Q", s = "S", r = "R" )
  #
  # Call it with those extras, passing 
  # all the others that calc_2() needs
  # as well. %(% is my function for
  # doing so: see below.
}


# The function that we call above. It
# uses its own arguments q to t , as
# well as those from calc_1() .
#
calc_2 <- function( a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t )
{
  ( a + c * 10 + e * 100 + g * 1000 + i * 10000 + k * 100000 +
  m * 1000000 + o * 10000000 ) %>%
  str_c( q, r, s, t )
} 


# Calls function f2 . Passes f2 whichever
# arguments it needs from its caller. 
# Corresponding formals should have the
# same name in both. Also passes f2 extra
# arguments from the named list extra. 
# The names should have the same names as
# corresponding formals of f2 .
#
call_with_extras <- function( f2, extras )
{   
  f1_call <- match.call( sys.function(1), sys.call(1) )  
  # A call object.

  f1_actuals <- as.list( f1_call %>% tail(-1) ) 
  # Named list of f1's actuals.

  f1_formals <- names( f1_actuals )
  # Names of f1's formals.

  f2_formals <- names( formals( f2 ) )
  # Names of f2's formals.

  f2_formals_from_f1 <- intersect( f2_formals, f1_formals )
  # Names of f2's formals which f1 can supply.

  f2_formals_not_from_f1 <- setdiff( f2_formals, f1_formals )
  # Names of f2's formals which f1 can't supply.

  extra_formals <- names( extras ) 
  # Names of f2's formals supplied as extras.

  assert_that( setequal( extra_formals, f2_formals_not_from_f1 ) )
  # The last two should be equal.

  f2_actuals_from_f1 <- f1_actuals[ f2_formals_from_f1 ]
  # List of actuals which f1 can supply to f2.

  f2_actuals <- append( f2_actuals_from_f1, extras )
  # All f2's actuals.

  f2_call <- call2( f2, !!! f2_actuals )
  # Call to f2.

  eval( f2_call )
  # Run it.
}


# Test it.
#
calc_1( a=1, b=11, c=2, d=22, e=3, f=33, g=4, h=44, i=5, j=55, k=6
      , l=66, m=7, n=77, o=8, p=88 
      )