自动Arima in R错误:未选择季节性差异

自动Arima in R错误:未选择季节性差异,r,time-series,forecasting,arima,R,Time Series,Forecasting,Arima,我正在使用R中的auto.arima包为我的公司创建一个预测模型 每次运行模型时,我都会遇到这个错误,并且似乎找不到关于如何处理这个问题的任何资源 Warning in value[[3L]](cond): The chosen test encountered an error, so no seasonal differencing is selected. Check the time series data. 有人知道这个错误的含义吗?检查时间序列数据的目的是什么?如果有任何帮助,我将

我正在使用R中的auto.arima包为我的公司创建一个预测模型

每次运行模型时,我都会遇到这个错误,并且似乎找不到关于如何处理这个问题的任何资源

Warning in value[[3L]](cond): The chosen test encountered an error, so no seasonal differencing is selected. Check the time series data.
有人知道这个错误的含义吗?检查时间序列数据的目的是什么?如果有任何帮助,我将不胜感激。我已经在互联网上搜索了这个问题的答案,但没有找到任何答案

这是我正在使用的代码,我不能发布数据,因为它是机密的。但我每周都会总结出数百个不同风格的销售时间序列

library(forecast)

new <- split(fctts, fctts$opt)

mod1 <- lapply(new, function(x) ts(x$sales, frequency = 52))

mod <- lapply(mod1, function(x) auto.arima(x))

res <- mapply(function(mod, new) forecast(mod, h = 12), mod, new)

forecasts <- lapply(apply(res,2,list), function(x) x[[1]]$mean)
样本数据:

fctts <- read.table(text='
_week   opt sales 
4/30/2017   Style_A 13
5/7/2017    Style_A 13
5/14/2017   Style_A 13
5/21/2017   Style_A 12
5/28/2017   Style_A 8
6/4/2017    Style_A 17
6/11/2017   Style_A 10
6/18/2017   Style_A 8
6/25/2017   Style_A 8
7/2/2017    Style_A 10
7/9/2017    Style_A 9
7/16/2017   Style_A 11
7/23/2017   Style_A 7
7/30/2017   Style_A 5
8/6/2017    Style_A 15
8/13/2017   Style_A 23
8/20/2017   Style_A 20
8/27/2017   Style_A 24
9/3/2017    Style_A 45
9/10/2017   Style_A 39
9/17/2017   Style_A 28
9/24/2017   Style_A 22
10/1/2017   Style_A 51
10/8/2017   Style_A 43
10/15/2017  Style_A 28
10/22/2017  Style_A 30
10/29/2017  Style_A 40
11/5/2017   Style_A 14
11/12/2017  Style_A 44
11/19/2017  Style_A 14
11/26/2017  Style_A 28
12/3/2017   Style_A 31
12/10/2017  Style_A 15
12/17/2017  Style_A 23
12/24/2017  Style_A 11
12/31/2017  Style_A 12
1/7/2018    Style_A 15
1/14/2018   Style_A 21
1/21/2018   Style_A 23
1/28/2018   Style_A 20
2/4/2018    Style_A 27
2/11/2018   Style_A 33
2/18/2018   Style_A 24
2/25/2018   Style_A 31
3/4/2018    Style_A 35
3/11/2018   Style_A 19
3/18/2018   Style_A 37
3/25/2018   Style_A 47
4/1/2018    Style_A 32
4/8/2018    Style_A 52
4/15/2018   Style_A 44
4/22/2018   Style_A 33
4/29/2018   Style_A 52
5/6/2018    Style_A 31
10/8/2017   Style_B 4
10/15/2017  Style_B 4
10/22/2017  Style_B 6
10/29/2017  Style_B 8
11/5/2017   Style_B 1
11/12/2017  Style_B 7
11/19/2017  Style_B 2
11/26/2017  Style_B 2
12/3/2017   Style_B 5
12/10/2017  Style_B 1
12/17/2017  Style_B 4
12/24/2017  Style_B 3
12/31/2017  Style_B 2
1/7/2018    Style_B 7
1/14/2018   Style_B 4
1/21/2018   Style_B 10
1/28/2018   Style_B 4
2/4/2018    Style_B 8
2/11/2018   Style_B 6
2/18/2018   Style_B 9
2/25/2018   Style_B 10
3/4/2018    Style_B 18
3/11/2018   Style_B 9
3/18/2018   Style_B 14
3/25/2018   Style_B 24
4/1/2018    Style_B 5
4/8/2018    Style_B 12
4/15/2018   Style_B 9
4/22/2018   Style_B 15
4/29/2018   Style_B 16
5/6/2018    Style_B 15
4/30/2017   Style_C 7
5/7/2017    Style_C 1
5/14/2017   Style_C 0
5/21/2017   Style_C 5
5/28/2017   Style_C 1
6/4/2017    Style_C 1
6/11/2017   Style_C 5
6/18/2017   Style_C 1
6/25/2017   Style_C 1
7/2/2017    Style_C 0
7/9/2017    Style_C 2
7/16/2017   Style_C 3
7/23/2017   Style_C 6
7/30/2017   Style_C 2
8/6/2017    Style_C 5
8/13/2017   Style_C 14
8/20/2017   Style_C 7
8/27/2017   Style_C 1
9/3/2017    Style_C 1
9/10/2017   Style_C 7
9/17/2017   Style_C 0
9/24/2017   Style_C 2
10/1/2017   Style_C 5
10/8/2017   Style_C 2
10/15/2017  Style_C 0
10/22/2017  Style_C 2
10/29/2017  Style_C 1
11/5/2017   Style_C 1
11/12/2017  Style_C 1
11/19/2017  Style_C 4
11/26/2017  Style_C 13
12/3/2017   Style_C 4
12/10/2017  Style_C 7
12/17/2017  Style_C 5
12/24/2017  Style_C 2
12/31/2017  Style_C 4
1/7/2018    Style_C 6
1/14/2018   Style_C 4
1/21/2018   Style_C 7
1/28/2018   Style_C 5
2/4/2018    Style_C 19
2/11/2018   Style_C 45
2/18/2018   Style_C 33
2/25/2018   Style_C 37
3/4/2018    Style_C 36
3/11/2018   Style_C 44
3/18/2018   Style_C 22
3/25/2018   Style_C 54
4/1/2018    Style_C 35
4/8/2018    Style_C 41
4/15/2018   Style_C 26
4/22/2018   Style_C 25
4/29/2018   Style_C 52
5/6/2018    Style_C 37
', header=TRUE)

此警告(非错误)通知您,用于选择季节性差异数D的季节性单位根测试出错

诚然,关于为什么会发生这种情况,这条信息并没有提供太多信息。在您的情况下,无法执行STL分解,因为您的数据包含少于两个季节性窗口。这对于使用nsdiffsy、test=seas或auto.arimay、seasonal.test=seas都是默认值是必要的

<> P>对于没有完整季节的数据集,可以考虑在SUBR中设置Sarima=false的SARIMA模型。ARIMA。 我现在改进了此消息,现在还包括测试失败原因的错误消息:

图书馆预测 将使用新的0季节性差异。考虑使用不同的单位根检验。 >警告:所选的季节性单位根测试在测试第一个差异时遇到错误。 >从stl:序列不是周期性的或周期少于两个 >将使用0个季节性差异。考虑使用不同的单位根检验。 res应用如下:

 mod <- lapply(mod1, function(x) auto.arima(x, seasonal = F))

您能否构建一些虚假数据或编辑关键信息,并共享一个产生相同错误的小数据集?建模问题很难诊断,没有数据是不可能的,下面添加了D参数,删除了警告模式,但我不想自动将D设置为0,如果某些时间序列足够长,可能需要D=1,对吗?正如注释:设置D=0会禁用季节性差分,因此,这将消除这个问题也就不足为奇了,因为它会在季节性测试中突然出现。我认为这更合适,因为需要统计专业知识来讨论它。