Encryption 用Openmp在C语言中并行模拟AES

Encryption 用Openmp在C语言中并行模拟AES,encryption,parallel-processing,aes,openmp,Encryption,Parallel Processing,Aes,Openmp,这是我的问题。我想使用Openmp在C中并行化AES-128加密。使用openmp的以下代码几乎没有任何加速。我的机器是四核intel i5机器 这是代码。任何关于如何进一步并行化此代码的建议都将非常感谢。请看一下代码末尾的main函数。下面的AES代码由几个函数组成,以实现其功能。请建议如何最好地从中提取并行性 非常感谢 /* ****************************************************************** ** Advanced

这是我的问题。我想使用Openmp在C中并行化AES-128加密。使用openmp的以下代码几乎没有任何加速。我的机器是四核intel i5机器

这是代码。任何关于如何进一步并行化此代码的建议都将非常感谢。请看一下代码末尾的main函数。下面的AES代码由几个函数组成,以实现其功能。请建议如何最好地从中提取并行性

非常感谢

/*
******************************************************************
**       Advanced Encryption Standard implementation in C.      **
**       By Niyaz PK                                            **
**       E-mail: niyazpk@gmail.com                              **
**       Downloaded from Website: www.hoozi.com                 **
******************************************************************
This is the source code for encryption using the latest AES algorithm.
******************************************************************
*/

// Include stdio.h for standard input/output.
// Used for giving output to the screen.
#include<omp.h>
#include<stdio.h>
#include<time.h>
#include<stdlib.h>


// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4

// The number of rounds in AES Cipher. It is simply initiated to zero. The actual value is recieved in the program.
int Nr=0;

// The number of 32 bit words in the key. It is simply initiated to zero. The actual value is recieved in the program.
int Nk=0;

// in - it is the array that holds the plain text to be encrypted.
// out - it is the array that holds the output CipherText after encryption.
// state - the array that holds the intermediate results during encryption.
unsigned char in[16], out[16], state[4][4];

// The array that stores the round keys.
unsigned char RoundKey[240];

// The Key input to the AES Program
unsigned char Key[32];



int getSBoxValue(int num)
{
    int sbox[256] =   {
    //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0
    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1
    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2
    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3
    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4
    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5
    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6
    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7
    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8
    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9
    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A
    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B
    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C
    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D
    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E
    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F
    return sbox[num];
}

// The round constant word array, Rcon[i], contains the values given by 
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(28)
// Note that i starts at 1, not 0).
int Rcon[255] = {
    0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 
    0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 
    0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 
    0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 
    0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 
    0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 
    0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 
    0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 
    0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 
    0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 
    0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 
    0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 
    0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 
    0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 
    0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 
    0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb  };

// This function produces Nb(Nr+1) round keys. The round keys are used in each round to encrypt the states. 
void KeyExpansion()
{
    int i,j;
    unsigned char temp[4],k;

    // The first round key is the key itself.
    for(i=0;i<Nk;i++)
    {
        RoundKey[i*4]=Key[i*4];
        RoundKey[i*4+1]=Key[i*4+1];
        RoundKey[i*4+2]=Key[i*4+2];
        RoundKey[i*4+3]=Key[i*4+3];
    }

    // All other round keys are found from the previous round keys.
    while (i < (Nb * (Nr+1)))
    {
        for(j=0;j<4;j++)
        {
            temp[j]=RoundKey[(i-1) * 4 + j];
        }
        if (i % Nk == 0)
        {
            // This function rotates the 4 bytes in a word to the left once.
            // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]

            // Function RotWord()
            {
                k = temp[0];
                temp[0] = temp[1];
                temp[1] = temp[2];
                temp[2] = temp[3];
                temp[3] = k;
            }

            // SubWord() is a function that takes a four-byte input word and 
            // applies the S-box to each of the four bytes to produce an output word.

            // Function Subword()
            {
                temp[0]=getSBoxValue(temp[0]);
                temp[1]=getSBoxValue(temp[1]);
                temp[2]=getSBoxValue(temp[2]);
                temp[3]=getSBoxValue(temp[3]);
            }

            temp[0] =  temp[0] ^ Rcon[i/Nk];
        }
        else if (Nk > 6 && i % Nk == 4)
        {
            // Function Subword()
            {
                temp[0]=getSBoxValue(temp[0]);
                temp[1]=getSBoxValue(temp[1]);
                temp[2]=getSBoxValue(temp[2]);
                temp[3]=getSBoxValue(temp[3]);
            }
        }
        RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];
        RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];
        RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];
        RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];
        i++;
    }
}

// This function adds the round key to state.
// The round key is added to the state by an XOR function.
void AddRoundKey(int round) 
{
    int i,j;
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];
        }
    }
}

// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void SubBytes()
{
    int i,j;
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            state[i][j] = getSBoxValue(state[i][j]);

        }
    }
}

// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void ShiftRows()
{
    unsigned char temp;

    // Rotate first row 1 columns to left    
    temp=state[1][0];
    state[1][0]=state[1][1];
    state[1][1]=state[1][2];
    state[1][2]=state[1][3];
    state[1][3]=temp;

    // Rotate second row 2 columns to left    
    temp=state[2][0];
    state[2][0]=state[2][2];
    state[2][2]=temp;

    temp=state[2][1];
    state[2][1]=state[2][3];
    state[2][3]=temp;

    // Rotate third row 3 columns to left
    temp=state[3][0];
    state[3][0]=state[3][3];
    state[3][3]=state[3][2];
    state[3][2]=state[3][1];
    state[3][1]=temp;
}

// xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}  
#define xtime(x)   ((x<<1) ^ (((x>>7) & 1) * 0x1b))

// MixColumns function mixes the columns of the state matrix
// The method used may look complicated, but it is easy if you know the underlying theory.
// Refer the documents specified above.
void MixColumns()
{
    int i;
    unsigned char Tmp,Tm,t;
    for(i=0;i<4;i++)
    {    
        t=state[0][i];
        Tmp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i] ;
        Tm = state[0][i] ^ state[1][i] ; Tm = xtime(Tm); state[0][i] ^= Tm ^ Tmp ;
        Tm = state[1][i] ^ state[2][i] ; Tm = xtime(Tm); state[1][i] ^= Tm ^ Tmp ;
        Tm = state[2][i] ^ state[3][i] ; Tm = xtime(Tm); state[2][i] ^= Tm ^ Tmp ;
        Tm = state[3][i] ^ t ; Tm = xtime(Tm); state[3][i] ^= Tm ^ Tmp ;
    }
}

// Cipher is the main function that encrypts the PlainText.
void Cipher()
{
    int i,j,round=0;

    //Copy the input PlainText to state array.
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            state[j][i] = in[i*4 + j];
        }
    }

    // Add the First round key to the state before starting the rounds.
    AddRoundKey(0); 

    // There will be Nr rounds.
    // The first Nr-1 rounds are identical.
    // These Nr-1 rounds are executed in the loop below.
    for(round=1;round<Nr;round++)
    {
        SubBytes();
        ShiftRows();
        MixColumns();
        AddRoundKey(round);
    }

    // The last round is given below.
    // The MixColumns function is not here in the last round.
    SubBytes();
    ShiftRows();
    AddRoundKey(Nr);

    // The encryption process is over.
    // Copy the state array to output array.
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            out[i*4+j]=state[j][i];
        }
    }
}

void encrypt(int *K,int *PT,int *CT)
{
    int i;

    //    int ct;

    // Calculate Nk and Nr from the received value.
    Nr = 128;
    Nk = Nr / 32;
    Nr = Nk + 6;


     // Copy the Key and PlainText
    for(i=0;i<Nk*4;i++)
    {
        Key[i]=K[i];
        in[i]=PT[i];
    }

   /* 
   printf("\nKey for encryption:\n");
    for(i=0; i < Nk*4; i++)
      printf("%02x",Key[i]);
    printf("\n");
*/
/*
    printf("\nText before encryption:\n");
    for(i=0; i < Nk*4; i++)
      printf("%02x",in[i]);
    printf("\n");
*/    
    // The KeyExpansion routine must be called before encryption.
    KeyExpansion();

    // The next function call encrypts the PlainText with the Key using AES algorithm.
    Cipher();


    // Output the encrypted text.
    //io_printf("\nText after encryption:\n");
     for(i=0; i < Nk*4; i++)
    {
        CT[i] = out[i];
        printf("%02x",out[i]);
      }
    printf("\n");

    //  ct = out[15];
    // return ct;

}

//main function
int main()
{


  srand(time(NULL));
  unsigned int rnd[4];

  int key[16];
  int pt[16];
  int ct[16];

  unsigned int i,j;

  #pragma omp parallel for num_threads(4) schedule(dynamic)
  for(i=0; i<65000*10; i++)
  {
   rnd[0]=rand();
   rnd[1]=rand();
   rnd[2]=rand();
   rnd[3]=rand();

   for(j=0; j < 4; j++)
   {
    key[4*j]   = (rnd[j] & 0xff);
    pt[4*j]    = key[4*j];
    key[4*j+1] = ((rnd[j] >> 8)  & 0xff) ; 
    pt[4*j+1]  = key[4*j+1];
    key[4*j+2] = ((rnd[j] >> 16) & 0xff) ;
    pt[4*j+2]  = key[4*j+2];
    key[4*j+3] = ((rnd[j] >> 24) & 0xff) ;
    pt[4*j+3]  = key[4*j+3];
   }

   #pragma omp task      
   encrypt(key,pt,ct);

  }

  return 0;

}
/*
******************************************************************
**高级加密标准在C中的实现**
**作者:Niyaz PK**
**电邮:niyazpk@gmail.com                              **
**从网站下载:www.hoozi.com**
******************************************************************
这是使用最新AES算法进行加密的源代码。
******************************************************************
*/
//包括标准输入/输出的stdio.h。
//用于向屏幕提供输出。
#包括
#包括
#包括
#包括
//AES中组成一个状态的列数。这是AES中的常数。值=4
#定义Nb 4
//AES密码中的轮数。它只是被初始化为零。在程序中接收实际值。
int Nr=0;
//键中32位字的数目。它只是被初始化为零。在程序中接收实际值。
int Nk=0;
//in-它是保存要加密的纯文本的数组。
//out-加密后保存输出密文的数组。
//状态-在加密期间保存中间结果的数组。
输入[16],输出[16],状态[4][4]的未签名字符;
//存储圆键的数组。
无符号字符圆键[240];
//AES程序的按键输入
无符号字符键[32];
int getSBoxValue(int num)
{
int sbox[256]={
//01 2 3 4 5 6 7 8 9 A B C D E F
0x63、0x7c、0x77、0x7b、0xf2、0x6b、0x6f、0xc5、0x30、0x01、0x67、0x2b、0xfe、0xd7、0xab、0x76、//0
0xca、0x82、0xc9、0x7d、0xfa、0x59、0x47、0xf0、0xad、0xd4、0xa2、0xaf、0x9c、0xa4、0x72、0xc0、//1
0xb7、0xfd、0x93、0x26、0x36、0x3f、0xf7、0xcc、0x34、0xa5、0xe5、0xf1、0x71、0xd8、0x31、0x15、//2
0x04、0xc7、0x23、0xc3、0x18、0x96、0x05、0x9a、0x07、0x12、0x80、0xe2、0xeb、0x27、0xb2、0x75、//3
0x09、0x83、0x2c、0x1a、0x1b、0x6e、0x5a、0xa0、0x52、0x3b、0xd6、0xb3、0x29、0xe3、0x2f、0x84、//4
0x53、0xd1、0x00、0xed、0x20、0xfc、0xb1、0x5b、0x6a、0xcb、0xbe、0x39、0x4a、0x4c、0x58、0xcf、//5
0xd0、0xef、0xaa、0xfb、0x43、0x4d、0x33、0x85、0x45、0xf9、0x02、0x7f、0x50、0x3c、0x9f、0xa8、//6
0x51、0xa3、0x40、0x8f、0x92、0x9d、0x38、0xf5、0xbc、0xb6、0xda、0x21、0x10、0xff、0xf3、0xd2、//7
0xcd、0x0c、0x13、0xec、0x5f、0x97、0x44、0x17、0xc4、0xa7、0x7e、0x3d、0x64、0x5d、0x19、0x73、//8
0x60、0x81、0x4f、0xdc、0x22、0x2a、0x90、0x88、0x46、0xee、0xb8、0x14、0xde、0x5e、0x0b、0xdb、//9
0xe0、0x32、0x3a、0x0a、0x49、0x06、0x24、0x5c、0xc2、0xd3、0xac、0x62、0x91、0x95、0xe4、0x79、//A
0xe7、0xc8、0x37、0x6d、0x8d、0xd5、0x4e、0xa9、0x6c、0x56、0xf4、0xea、0x65、0x7a、0xae、0x08、//B
0xba、0x78、0x25、0x2e、0x1c、0xa6、0xb4、0xc6、0xe8、0xdd、0x74、0x1f、0x4b、0xbd、0x8b、0x8a、//C
0x70、0x3e、0xb5、0x66、0x48、0x03、0xf6、0x0e、0x61、0x35、0x57、0xb9、0x86、0xc1、0x1d、0x9e、//D
0xe1、0xf8、0x98、0x11、0x69、0xd9、0x8e、0x94、0x9b、0x1e、0x87、0xe9、0xce、0x55、0x28、0xdf、//E
0x8c、0xa1、0x89、0x0d、0xbf、0xe6、0x42、0x68、0x41、0x99、0x2d、0x0f、0xb0、0x54、0xbb、0x16};//F
返回sbox[num];
}
//圆形常量字数组Rcon[i]包含以下值:
//x到次方(i-1)是字段GF(28)中x的幂(x表示为{02})
//请注意,我从1开始,而不是0)。
int Rcon[255]={
0x8d、0x01、0x02、0x04、0x08、0x10、0x20、0x40、0x80、0x1b、0x36、0x6c、0xd8、0xab、0x4d、0x9a、,
0x2f、0x5e、0xbc、0x63、0xc6、0x97、0x35、0x6a、0xd4、0xb3、0x7d、0xfa、0xef、0xc5、0x91、0x39、,
0x72、0xe4、0xd3、0xbd、0x61、0xc2、0x9f、0x25、0x4a、0x94、0x33、0x66、0xcc、0x83、0x1d、0x3a、,
0x74、0xe8、0xcb、0x8d、0x01、0x02、0x04、0x08、0x10、0x20、0x40、0x80、0x1b、0x36、0x6c、0xd8、,
0xab、0x4d、0x9a、0x2f、0x5e、0xbc、0x63、0xc6、0x97、0x35、0x6a、0xd4、0xb3、0x7d、0xfa、0xef、,
0xc5、0x91、0x39、0x72、0xe4、0xd3、0xbd、0x61、0xc2、0x9f、0x25、0x4a、0x94、0x33、0x66、0xcc、,
0x83、0x1d、0x3a、0x74、0xe8、0xcb、0x8d、0x01、0x02、0x04、0x08、0x10、0x20、0x40、0x80、0x1b,
0x36、0x6c、0xd8、0xab、0x4d、0x9a、0x2f、0x5e、0xbc、0x63、0xc6、0x97、0x35、0x6a、0xd4、0xb3、,
0x7d、0xfa、0xef、0xc5、0x91、0x39、0x72、0xe4、0xd3、0xbd、0x61、0xc2、0x9f、0x25、0x4a、0x94、,
0x33、0x66、0xcc、0x83、0x1d、0x3a、0x74、0xe8、0xcb、0x8d、0x01、0x02、0x04、0x08、0x10、0x20,
0x40、0x80、0x1b、0x36、0x6c、0xd8、0xab、0x4d、0x9a、0x2f、0x5e、0xbc、0x63、0xc6、0x97、0x35、,
0x6a、0xd4、0xb3、0x7d、0xfa、0xef、0xc5、0x91、0x39、0x72、0xe4、0xd3、0xbd、0x61、0xc2、0x9f、,
0x25、0x4a、0x94、0x33、0x66、0xcc、0x83、0x1d、0x3a、0x74、0xe8、0xcb、0x8d、0x01、0x02、0x04,
0x08、0x10、0x20、0x40、0x80、0x1b、0x36、0x6c、0xd8、0xab、0x4d、0x9a、0x2f、0x5e、0xbc、0x63,
0xc6、0x97、0x35、0x6a、0xd4、0xb3、0x7d、0xfa、0xef、0xc5、0x91、0x39、0x72、0xe4、0xd3、0xbd、,
0x61、0xc2、0x9f、0x25、0x4a、0x94、0x33、0x66、0xcc、0x83、0x1d、0x3a、0x74、0xe8、0xcb};
//此函数生成Nb(Nr+1)圆形关键点。在每一轮中使用轮密钥来加密状态。
void键扩展()
{
int i,j;
无符号字符温度[4],k;
//第一轮钥匙就是钥匙本身。

对于(i=0;i您既不需要
schedule(dynamic)
也不需要
task
构造
void encrypt(int *K,int *PT,int *CT)
{
    int i;

    //    int ct;

    // Calculate Nk and Nr from the received value.
    Nr = 128;
    Nk = Nr / 32;
    Nr = Nk + 6;


     // Copy the Key and PlainText
    for(i=0;i<Nk*4;i++)
    {
        Key[i]=K[i];
        in[i]=PT[i];
    }

   /* 
   printf("\nKey for encryption:\n");
    for(i=0; i < Nk*4; i++)
      printf("%02x",Key[i]);
    printf("\n");
*/
/*
    printf("\nText before encryption:\n");
    for(i=0; i < Nk*4; i++)
      printf("%02x",in[i]);
    printf("\n");
*/    
    // The KeyExpansion routine must be called before encryption.
    KeyExpansion();

    // The next function call encrypts the PlainText with the Key using AES algorithm.
    Cipher();


    // Output the encrypted text.
    //io_printf("\nText after encryption:\n");
     for(i=0; i < Nk*4; i++)
    {
        CT[i] = out[i];
//        printf("%02x",out[i]);
      }
//    printf("\n");

    //  ct = out[15];
    // return ct;

}

//main function
int main()
{


  srand(time(NULL));
  unsigned int rnd[4];

//  printf("rand_key = %2x%2x%2x%2x\n",rnd[0],rnd[1],rnd[2],rnd[3]);

  int key[16];
  int pt[16];
  int ct[16];

  unsigned int i,j;
  #pragma omp parallel for private(key,pt,ct) num_threads(2) schedule(static)
  for(i=0; i<65000; i++)
  {
   rnd[0]=rand();
   rnd[1]=rand();
   rnd[2]=rand();
   rnd[3]=rand();

   for(j=0; j < 4; j++)
   {
    key[4*j]   = (rnd[j] & 0xff);
    pt[4*j]    = key[4*j];
    key[4*j+1] = ((rnd[j] >> 8)  & 0xff) ; 
    pt[4*j+1]  = key[4*j+1];
    key[4*j+2] = ((rnd[j] >> 16) & 0xff) ;
    pt[4*j+2]  = key[4*j+2];
    key[4*j+3] = ((rnd[j] >> 24) & 0xff) ;
    pt[4*j+3]  = key[4*j+3];
   }

   encrypt(key,pt,ct);


  }

  return 0;

}