Python 在算法信号中寻找周期性

Python 在算法信号中寻找周期性,python,signal-processing,periodic-task,Python,Signal Processing,Periodic Task,在测试关于下列递归关系的猜想时 , 我编写了一个python程序,计算序列并将其打印到一个表中 1 # Consider the recursive relation x_{i+1} = p-1 - (p*i-1 mod x_i) 2 # with p prime and x_0 = 1. What is the shortest period of the 3 # sequence? 4 5 from __future__ import print_funct

在测试关于下列递归关系的猜想时

,

我编写了一个python程序,计算序列并将其打印到一个表中

 1   # Consider the recursive relation x_{i+1} = p-1 - (p*i-1 mod x_i)
 2   # with p prime and x_0 = 1. What is the shortest period of the
 3   # sequence?
 4   
 5   from __future__ import print_function
 6   import numpy as np
 7   from matplotlib import pyplot  as plt
 8   
 9   # The length of the sequences.
 10  seq_length = 100
 11  
 12  upperbound_primes = 30
 13  
 14  # Computing a list of prime numbers up to n
 15  def primes(n):
 16   sieve = [True] * n
 17   for i in xrange(3,int(n**0.5)+1,2):
 18     if sieve[i]:
 19         sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
 20   return [2] + [i for i in xrange(3,n,2) if sieve[i]]
 21  
 22  # The list of prime numbers up to upperbound_primes
 23  p = primes(upperbound_primes)
 24  
 25  # The amount of primes numbers
 26  no_primes = len(p)
 27  
 28  # Generate the sequence for the prime number p
 29  def sequence(p):
 30    x = np.empty(seq_length)
 31    x[0] = 1
 32    for i in range(1,seq_length):
 33      x[i] = p - 1 - (p * (i-1) - 1) % x[i-1]
 34    return x
 35  
 36  # List with the sequences.
 37  seq = [sequence(i) for i in p]  
 38  """
 39  # Print the sequences in a table where the upper row
 40  # indicates the prime numbers.
 41  for i in range(seq_length):
 42    if not i: 
 43      for n in p:
 44        print('\t',n,end='')
 45      print('')
 46    print(i+1,'\t',end='')
 47    for j in range(no_primes):
 48      print(seq[j][i],end='\t')
 49    print('\n',end='')
 50  """
 51  def autocor(x):
 52    result = np.correlate(x,x,mode='full')
 53    return result[result.size/2:]
 54  
 55  
 56  fig = plt.figure('Finding period in the sequences')
 57  k = 0
 58  for s in  seq:
 59    k = k + 1
 60    fig.add_subplot(no_primes,1,k)
 61    plt.title("Prime number %d" % p[k-1])
 62    plt.plot(autocor(s))
 63  plt.show()
 64  
现在我想研究我计算的这些序列中的周期性。在网上浏览后,我发现自己有两个选择:

  • 对数据进行自相关分析,寻找第一个峰值。这应该给出周期的近似值
  • 对数据进行FFT。这显示了数字的频率。我看不出这如何能提供关于数字序列周期性的任何有用信息
最后几行显示了我对使用自相关的尝试,灵感来自于

它给出了下面的情节

很明显,我们看到了所有素数的递减序列

使用以下简化的python代码段在sin函数上测试相同的方法时

 1   # Testing the autocorrelation of numpy
 2   
 3   import numpy as np
 4   from matplotlib import pyplot as plt
 5   
 6   num_samples = 1000
 7   t = np.arange(num_samples)
 8   dt = 0.1
 9   
 10  def autocor(x):
 11    result = np.correlate(x,x,mode='full')
 12    return result[result.size/2:]
 13  
 14  def f(x):
 15    return [np.sin(i * 2 * np.pi * dt) for i in range(num_samples)]
 16  
 17  plt.plot(autocor(f(t)))
 18  plt.show()
我得到了一个类似的结果,它给出了正弦函数的以下曲线图

例如,如何读取正弦函数情况下的周期性

无论如何,我不理解导致峰值的自相关机制,峰值给出了信号周期性的信息。有人能详细说明一下吗?在这种情况下,如何正确使用自相关

还有,我在实现自相关时做错了什么


欢迎提出关于确定数字序列周期性的替代方法的建议。

这里有很多问题,因此我将开始描述自相关如何从“3”的情况(即第一幅图像的第二个子图)产生周期

对于素数3,序列是(在不太一致的开始之后)
1,2,1,2,1,2,1,2,…
。为了计算自相关,数组基本上是相对于自身平移的,所有对齐的元素都会相乘,所有这些结果都会相加。所以它看起来像这样,对于一些测试用例,
a
是自相关:

 0  1  2  3  4  5  6  7 ... 43 44 45 46 47 48 49         # indices 0    
 1  2  1  2  1  2  1  2      2  1  2  1  2  1  2         # values  0
 1  2  1  2  1  2  1  2      2  1  2  1  2  1  2         # values  1
 0  1  2  3  4  5  6  7 ... 43 44 45 46 47 48 49         # indices 1
 1  4  1  4  1  4  1  4      4  1  4  1  4  1  4         # products
 # above result A[0] = 5*25  5=1+4   25=# of pairs       # A[0] = 125


 0  1  2  3  4  5  6  7 ... 43 44 45 46 47 48 49         # indices 0    
 1  2  1  2  1  2  1  2      2  1  2  1  2  1  2         # values  0
    1  2  1  2  1  2  1  2      2  1  2  1  2  1  2         # values  1
    0  1  2  3  4  5  6  7 ... 43 44 45 46 47 48 49         # indices 1
    2  2  2  2  2  2  2      2  2  2  2  2  2  2         # products
 # above result A[1] = 4*24  4=2+2   24=# of pairs       # A[1] = 96

 0  1  2  3  4  5  6  7 ... 43 44 45 46 47 48 49         # indices 0    
 1  2  1  2  1  2  1  2      2  1  2  1  2  1  2         # values  0
       1  2  1  2  1  2  1  2      2  1  2  1  2  1  2         # values  1
       0  1  2  3  4  5  6  7 ... 43 44 45 46 47 48 49         # indices 1
       1  4  1  4  1  4  1  4      4  1  4  1  4         # products
 # above result A[2] = 5*23  5=4+1   23=# of pairs       # A[2] = 115
上面有三条带回家的消息:1。当相似元素在这里每隔一步排列并相乘时,自相关,
A
,具有更大的值2。自相关指数对应于相对位移3。如图所示,当对整个阵列进行自相关时,始终会有一个向下的斜坡,因为为产生值而加在一起的点数在每次连续移位时都会减少

所以在这里你可以看到为什么在你的图表中有一个周期性的20%的“质数3”:因为当它们对齐时,求和的项是1+4,当它们不对齐时是2+2,也就是说,5对4。这就是你在阅读这段经文时所寻找的凹凸。也就是说,此处显示的周期为
2
,因为这是第一次碰撞的索引。(另外,顺便说一句,在上面我只计算了对的数量,看看这个已知的周期性如何导致你在自相关中看到的结果,也就是说,人们通常不想考虑对的数量。)

在这些计算中,如果在进行自相关之前先减去平均值,则相对于基准的凹凸值将增加。如果使用具有修剪端点的阵列进行计算,则可以删除渐变,因此始终存在相同的重叠;这通常是有意义的,因为通常人们寻找的是比完整样本波长短得多的周期性(因为需要多次振荡才能定义良好的振荡周期)


对于正弦波的自相关,基本答案是周期显示为第一个凹凸。我重新绘制了绘图,除非应用了时间轴。在这些事情中,使用实时轴总是最清晰的,所以我对代码做了一些修改,将其包括在内。(另外,我用一个适当的矢量化numpy表达式代替了列表理解,用于计算正弦波,但这在这里并不重要。我还明确定义了f(x)中的频率,只是为了更清楚地说明发生了什么——在这里隐式地定义了1的频率。)

主要的一点是,由于自相关是通过沿轴一次移动一个点来计算的,所以自相关的轴就是时间轴。所以我把它画成轴,然后可以读出它的周期。在这里,我放大以清楚地看到它(代码如下所示):

也就是说,在上面,我将频率设置为
0.3
,图中显示的周期约为
3.3
,这是预期的


所有这些都表明,根据我的经验,自相关通常对物理信号有效,但对算法信号则不太可靠。例如,如果一个周期性信号跳过一个步骤,这很容易被忽略,这在算法中可能发生,但在一个振动的对象中不太可能发生。你可能会认为计算算法信号的周期应该很简单,但四处搜索一下就会发现它不是,甚至很难定义周期的含义。例如,该系列:

1 2 1 2 1 2 0 1 2 1 2 1 2

自动相关测试无法正常工作。

更新。

@tom10对自相关进行了全面的调查,并解释了为什么自相关中的第一个凸起可以给出周期信号的周期

我尝试了两种方法,FFT和自相关。他们的结果是一致的,尽管我更喜欢FFT而不是自相关,因为它能更直接地给出周期

当使用自相关时,我们只需确定第一个峰值的坐标。手动检查自相关图将显示是否有“正确”的峰值,
1 2 1 2 1 2 0 1 2 1 2 1 2
 1   # Plotting sequences satisfying, x_{i+1} = p-1 - (p*i-1 mod x_i)
 2   # with p prime and x_0 = 1, next to their autocorrelation.
 3   
 4   from __future__ import print_function
 5   import numpy as np
 6   from matplotlib import pyplot  as plt
 7   
 8   # The length of the sequences.
 9   seq_length = 10000
 10  
 11  upperbound_primes = 12 
 12  
 13  # Computing a list of prime numbers up to n
 14  def primes(n):
 15   sieve = [True] * n
 16   for i in xrange(3,int(n**0.5)+1,2):
 17     if sieve[i]:
 18         sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
 19   return [2] + [i for i in xrange(3,n,2) if sieve[i]]
 20  
 21  # The list of prime numbers up to upperbound_primes
 22  p = primes(upperbound_primes)
 23  
 24  # The amount of primes numbers
 25  no_primes = len(p)
 26  
 27  # Generate the sequence for the prime number p
 28  def sequence(p):
 29    x = np.empty(seq_length)
 30    x[0] = 1
 31    for i in range(1,seq_length):
 32      x[i] = p - 1 - (p * (i-1) - 1) % x[i-1]
 33    return x
 34  
 35  # List with the sequences.
 36  seq = [sequence(i) for i in p]  
 37  
 38  # Autocorrelation function.
 39  def autocor(x):
 40    result = np.correlate(x,x,mode='full')
 41    return result[result.size/2:]
 42  
 43  fig = plt.figure("The sequences next to their autocorrelation")
 44  plt.suptitle("The sequences next to their autocorrelation")
 45  
 46  # Proper spacing between subplots.
 47  fig.subplots_adjust(hspace=1.2)
 48  
 49  # Set up pyplot to use TeX.
 50  plt.rc('text',usetex=True)
 51  plt.rc('font',family='serif')
 52  
 53  # Maximize plot window by command.
 54  mng = plt.get_current_fig_manager()
 55  mng.resize(*mng.window.maxsize())
 56  
 57  k = 0 
 58  for s in  seq:
 59    k = k + 1
 60    fig.add_subplot(no_primes,2,2*(k-1)+1)
 61    plt.title("Sequence of the prime %d" % p[k-1])
 62    plt.plot(s)
 63    plt.xlabel(r"Index $i$")
 64    plt.ylabel(r"Sequence number $x_i$")
 65    plt.xlim(0,100)
 66    
 67    # Constrain the number of ticks on the y-axis, for clarity.
 68    plt.locator_params(axis='y',nbins=4)
 69  
 70    fig.add_subplot(no_primes,2,2*k)
 71    plt.title(r"Autocorrelation of the sequence $^{%d}x$" % p[k-1])
 72    plt.plot(autocor(s))
 73    plt.xlabel(r"Index $i$")
 74    plt.xticks
 75    plt.ylabel("Autocorrelation")
 76    
 77    # Proper scaling of the y-axis.
 78    ymin = autocor(s)[1]-int(autocor(s)[1]/10)
 79    ymax = autocor(s)[1]+int(autocor(s)[1]/10)
 80    plt.ylim(ymin,ymax)
 81    plt.xlim(0,500)
 82    
 83    plt.locator_params(axis='y',nbins=4)
 84  
 85    # Use scientific notation when 0< t < 1 or t > 10
 86    plt.ticklabel_format(style='sci',axis='y',scilimits=(0,1))
 87  
 88  plt.show()
 1   # Plotting sequences satisfying, x_{i+1} = p-1 - (p*i-1 mod x_i)
 2   # with p prime and x_0 = 1, next to their Fourier transforms.
 3   
 4   from __future__ import print_function
 5   import numpy as np
 6   from matplotlib import pyplot  as plt
 7   
 8   # The length of the sequences.
 9   seq_length = 10000
 10  
 11  upperbound_primes = 12 
 12  
 13  # Computing a list of prime numbers up to n
 14  def primes(n):
 15   sieve = [True] * n
 16   for i in xrange(3,int(n**0.5)+1,2):
 17     if sieve[i]:
 18         sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
 19   return [2] + [i for i in xrange(3,n,2) if sieve[i]]
 20  
 21  # The list of prime numbers up to upperbound_primes
 22  p = primes(upperbound_primes)
 23  
 24  # The amount of primes numbers
 25  no_primes = len(p)
 26  
 27  # Generate the sequence for the prime number p
 28  def sequence(p):
 29    x = np.empty(seq_length)
 30    x[0] = 1
 31    for i in range(1,seq_length):
 32      x[i] = p - 1 - (p * (i-1) - 1) % x[i-1]
 33    return x
 34  
 35  # List with the sequences.
 36  seq = [sequence(i) for i in p]  
 37  
 38  fig = plt.figure("The sequences next to their FFT")
 39  plt.suptitle("The sequences next to their FFT")
 40  
 41  # Proper spacing between subplots.
 42  fig.subplots_adjust(hspace=1.2)
 43  
 44  # Set up pyplot to use TeX.
 45  plt.rc('text',usetex=True)
 46  plt.rc('font',family='serif')
 47  
 48  
 49  # Maximize plot window by command.
 50  mng = plt.get_current_fig_manager()
 51  mng.resize(*mng.window.maxsize())
 52  
 53  k = 0 
 54  for s in  seq:
 55    f = np.fft.rfft(s)
 56    f[0] = 0
 57    freq  = np.fft.rfftfreq(seq_length)
 58    k = k + 1
 59    fig.add_subplot(no_primes,2,2*(k-1)+1)
 60    plt.title("Sequence of the prime %d" % p[k-1])
 61    plt.plot(s)
 62    plt.xlabel(r"Index $i$")
 63    plt.ylabel(r"Sequence number $x_i$")
 64    plt.xlim(0,100)
 65    
 66    # Constrain the number of ticks on the y-axis, for clarity.
 67    plt.locator_params(nbins=4)
 68    
 69    fig.add_subplot(no_primes,2,2*k)
 70    plt.title(r"FFT of the sequence $^{%d}x$" % p[k-1])
 71    plt.plot(freq,abs(f))
 72    plt.xlabel("Frequency")
 73    plt.ylabel("Amplitude")
 74    plt.locator_params(nbins=4)
 75    
 76    # Use scientific notation when 0 < t < 0 or t > 10
 77    plt.ticklabel_format(style='sci',axis='y',scilimits=(0,1))
 78  
 79  plt.show()
 prime   frequency   period
 2       0.00        1000.00
 3       0.50        2.00
 5       0.08        12.00
 7       0.02        59.88
 11      0.00        1000.00
 1   # Print a table of periods, determined by the FFT method,
 2   # of sequences satisfying, 
 3   # x_{i+1} = p-1 - (p*i-1 mod x_i) with p prime and x_0 = 1.
 4   
 5   from __future__ import print_function
 6   import numpy as np
 7   from matplotlib import pyplot  as plt
 8   
 9   # The length of the sequences.
 10  seq_length = 10000
 11  
 12  upperbound_primes = 12 
 13  
 14  # Computing a list of prime numbers up to n
 15  def primes(n):
 16   sieve = [True] * n
 17   for i in xrange(3,int(n**0.5)+1,2):
 18     if sieve[i]:
 19         sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
 20   return [2] + [i for i in xrange(3,n,2) if sieve[i]]
 21  
 22  # The list of prime numbers up to upperbound_primes
 23  p = primes(upperbound_primes)
 24  
 25  # The amount of primes numbers
 26  no_primes = len(p)
 27  
 28  # Generate the sequence for the prime number p
 29  def sequence(p):
 30    x = np.empty(seq_length)
 31    x[0] = 1
 32    for i in range(1,seq_length):
 33      x[i] = p - 1 - (p * (i-1) - 1) % x[i-1]
 34    return x
 35  
 36  # List with the sequences.
 37  seq = [sequence(i) for i in p]  
 38  
 39  # Function that finds the first peak.
 40  # Assumption: seq_length >> 10 so the Fourier transformed
 41  #        signal is sufficiently smooth. 
 42  def firstpeak(x):
 43    for i in range(10,len(x)-1):
 44      if x[i+1] < x[i]:
 45        return i
 46    return len(x)-1
 47  
 48  k = 0 
 49  for s in  seq:
 50    f = np.fft.rfft(s)
 51    freq  = np.fft.rfftfreq(seq_length)
 52    k = k + 1
 53    if k == 1:
 54      print("prime \t frequency \t period")
 55    print(p[k-1],'\t %.2f' % float(freq[firstpeak(abs(f))]), \
 56      '\t\t %.2f' % float(1/freq[firstpeak(abs(f))]))