Pytorch 训练两足系统时奖励不增加

Pytorch 训练两足系统时奖励不增加,pytorch,reinforcement-learning,policy-gradient-descent,Pytorch,Reinforcement Learning,Policy Gradient Descent,我是一个全新的强化学习者,这是我的第一个实践项目。我尝试在OpenAI健身房环境中使用策略梯度算法来训练双足系统 然而,无论是在第0集还是在第1000集,奖赏都不会改变,我无法找出哪里出了问题。谁能帮帮我吗 蒂亚 代码如下: import torch import torch.nn as nn import numpy from torch.autograd import Variable import gym def train(model, name): model.train()

我是一个全新的强化学习者,这是我的第一个实践项目。我尝试在OpenAI健身房环境中使用策略梯度算法来训练双足系统

然而,无论是在第0集还是在第1000集,奖赏都不会改变,我无法找出哪里出了问题。谁能帮帮我吗

蒂亚

代码如下:

import torch
import torch.nn as nn
import numpy
from torch.autograd import Variable
import gym

def train(model, name):
    model.train()
    env = gym.make(name)
    env.reset()
    num_episodes = 20000
    max_steps = 10000
    optim = torch.optim.Adam(model.parameters(), lr=1)
    numsteps = []
    rewards = []
    avg_numsteps = []

    min_reward = -1000

    for episode in range(num_episodes):
        state = env.reset()
        probs = []
        rewards = []

        for steps in range(max_steps):
            action, log_prob = model.action(state)
            env.render()
            state, reward, finished, _ = env.step(action.squeeze(0).detach().numpy())
            env.render()
            probs.append(log_prob)
            rewards.append(reward)
            if finished:
                break

        if finished:
            Rewards = []
            for i in range(len(rewards)):
                G = 0
                p = 0
                for reward in rewards[i:]:
                    G = G + 0.9 * p * reward
                    p = p + 1
                Rewards.append(G)

            Rewards = torch.tensor(Rewards)

            discounted_reward = (Rewards - Rewards.mean()) / (Rewards.std() + 1e-9)

            gradients = []
            for log_prob, G in zip(log_prob, discounted_reward):
                gradients.append(-log_prob * G)

            optim.zero_grad()
            policy_gradient = Variable(torch.stack(gradients).sum(), requires_grad=True)
            policy_gradient.backward()
            optim.step()
            numsteps.append(steps)
            avg_numsteps.append(numpy.mean(numsteps[-10:]))
            rewards.append(numpy.sum(rewards))

            print("episode: {}, total reward: {}, average_reward: {}, length: {}\n".format(episode,
                                                                                           numpy.sum(rewards),
                                                                                           numpy.round(numpy.mean(
                                                                                               rewards[-10:]),
                                                                                                       decimals=3),
                                                                                           steps))

        if numpy.sum(rewards) > min_reward:
            torch.save(model.state_dict(), '/home/atharva/policyNet.pth')
            min_reward = numpy.sum(rewards)


def test(model, name):
    env = gym.make(name)
    model.eval()
    state = env.reset()
    with torch.no_grad():
        while True:
            action, log_prob = model(state)
            state, reward, finished, _ = env.step(action.squeeze(0).numpy())
            env.render()
            if finished:
                break


class PolicyNet(nn.Module):
    def __init__(self, inputs, actions, hidden_size):
        super(PolicyNet, self).__init__()
        self.num_actions = actions
        self.layer1 = nn.Linear(inputs, hidden_size)
        self.layer2 = nn.Linear(hidden_size, hidden_size)
        self.layer3 = nn.Linear(hidden_size, 2*hidden_size)
        self.layer4 = nn.Linear(2*hidden_size, hidden_size)
        self.layer5 = nn.Linear(hidden_size, actions)

    def forward(self, x):
        x = self.layer1(x)
        x = nn.functional.relu(x)
        x = self.layer2(x)
        x = nn.functional.relu(x)
        x = self.layer3(x)
        x = nn.functional.relu(x)
        x = self.layer4(x)
        x = nn.functional.relu(x)
        x = self.layer5(x)
        return x

    def action(self, state):
        state = torch.from_numpy(state).float().unsqueeze(0)
        actions = self.forward(Variable(state))
        #prob = numpy.random.choice(self.num_actions, p=numpy.squeeze(actions.detach().numpy()))
        log_prob = torch.log(actions.squeeze(0))
        return actions, log_prob
电话如下

from REINFORCE import PolicyNet, train

model = PolicyNet(24, 4, 256)
train(model, 'BipedalWalker-v3')

你的学习率太高了!高学习率可能导致您的模型永远不会收敛(事实上,损失可能会分散)。学习率太低会使培训过程过长。你必须为自己找到一个平衡点

调整您的学习率可能会对模型的性能产生巨大影响。我建议你花点时间阅读这篇(写得很好)博客文章:

对于初学者,请尝试在
[0.01,0.00001]
范围内的学习速率。例如:

optim = torch.optim.Adam(model.parameters(), lr=0.001)

你的学习率太高了!高学习率可能导致您的模型永远不会收敛(事实上,损失可能会分散)。学习率太低会使培训过程过长。你必须为自己找到一个平衡点

调整您的学习率可能会对模型的性能产生巨大影响。我建议你花点时间阅读这篇(写得很好)博客文章:

对于初学者,请尝试在
[0.01,0.00001]
范围内的学习速率。例如:

optim = torch.optim.Adam(model.parameters(), lr=0.001)

之前的学习率为1e-2至1e-5,但仍然没有发生任何事情。。所以,当我感到沮丧,并保持它作为1。。。我相信模型参数没有更新,因此奖赏和损失等保持不变……不确定这是否会产生影响,但将
actions=self.forward(Variable(state))
替换为
actions=self.\uu cal\uuu(torch.tensor(state))
。通过直接调用forward,你可以跳过一些在向后传球中使用的钩子。深度强化学习因其对超参数的敏感性而臭名昭著。这可能是您培训中的一个错误,但通常需要找到正确的超参数才能正常工作。您可以在这里查看一些有用的示例:非常感谢,我们将查看它们。之前的学习率为1e-2到1e-5,但仍然没有发生任何事情。。所以,当我感到沮丧,并保持它作为1。。。我相信模型参数没有更新,因此奖赏和损失等保持不变……不确定这是否会产生影响,但将
actions=self.forward(Variable(state))
替换为
actions=self.\uu cal\uuu(torch.tensor(state))
。通过直接调用forward,你可以跳过一些在向后传球中使用的钩子。深度强化学习因其对超参数的敏感性而臭名昭著。这可能是您培训中的一个错误,但通常需要找到正确的超参数才能正常工作。您可以在这里查看一些有用的示例:非常感谢,我们将查看它们。