帮助进行子序列的Coq证明

帮助进行子序列的Coq证明,coq,proof-system,Coq,Proof System,我有定义的归纳类型: Inductive InL (A:Type) (y:A) : list A -> Prop := | InHead : forall xs:list A, InL y (cons y xs) | InTail : forall (x:A) (xs:list A), InL y xs -> InL y (cons x xs). Inductive SubSeq (A:Type) : list A -> list A -> Prop :=

我有定义的归纳类型:

Inductive InL (A:Type) (y:A) : list A -> Prop := 
  | InHead : forall xs:list A, InL y (cons y xs) 
  | InTail : forall (x:A) (xs:list A), InL y xs -> InL y (cons x xs).

Inductive SubSeq (A:Type) : list A -> list A -> Prop :=
 | SubNil : forall l:list A, SubSeq nil l
 | SubCons1 : forall (x:A) (l1 l2:list A), SubSeq l1 l2 -> SubSeq l1 (x::l2)
 | SubCons2 : forall (x:A) (l1 l2:list A), SubSeq l1 l2 -> SubSeq (x::l1) (x::l2).
现在我必须证明一系列的归纳性质,但我一直被卡住

Lemma proof1: forall (A:Type) (x:A) (l1 l2:list A), SubSeq l1 l2 -> InL x l1 -> InL x l2.
Proof.
 intros.
 induction l1.
 induction l2.
 exact H0.

Qed.

有人能帮我进步吗。

事实上,直接对子集判断进行归纳比较容易。 但是,您需要尽可能地通俗易懂,因此我的建议如下:

Lemma proof1: forall (A:Type) (x:A) (l1 l2:list A), 
  SubSeq l1 l2 -> InL x l1 -> InL x l2.
(* first introduce your hypothesis, but put back x and In foo
   inside the goal, so that your induction hypothesis are correct*)
intros. 
revert x H0. induction H; intros.
(* x In [] is not possible, so inversion will kill the subgoal *)
inversion H0.

(* here it is straitforward: just combine the correct hypothesis *)
apply InTail; apply IHSubSeq; trivial.

(* x0 in x::l1 has to possible sources: x0 == x or x0 in l1 *)
inversion H0; subst; clear H0.
apply InHead.
apply InTail; apply IHSubSeq; trivial.
Qed.
“反转”是一种检查归纳术语的策略,它为您提供了构建此类术语的所有可能方法!!没有任何归纳假设!! 它只给你建设性的前提

你可以直接在l1和l2上进行归纳,但你必须手工构造正确的倒装实例,因为你的归纳假设非常弱

希望有帮助, 五,