C++ 在这种情况下,德雷克是否遵守关节限制?我如何检查?

C++ 在这种情况下,德雷克是否遵守关节限制?我如何检查?,c++,drake,C++,Drake,我试图理解在这个简单的例子中,Drake是否遵循关节极限 我有这个URDF <?xml version="1.0"?> <robot name="SimpleDoublePendulum"> <link name="base"> <inertial> <origin rpy="0 0 0" xyz="0 0 0"/>

我试图理解在这个简单的例子中,Drake是否遵循关节极限

我有这个URDF

<?xml version="1.0"?>
<robot name="SimpleDoublePendulum">
  <link name="base">
    <inertial>
      <origin rpy="0 0 0" xyz="0 0 0"/>
      <mass value="1"/>
      <inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>
    </inertial>
    <visual>
      <origin xyz="0 0.1 0"/>
      <geometry>
        <box size="1 0.2 1"/>
      </geometry>
      <material name="Red"/>
    </visual>
  </link>
  <link name="upper_arm">
    <inertial>
      <origin rpy="0 0 0" xyz="0 -0.5 0"/>
      <mass value="1"/>
      <inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>
    </inertial>
    <visual>
      <origin rpy="1.57079632679 0 0" xyz="0 -0.5 0"/>
      <geometry>
        <cylinder length="1.0" radius="0.1"/>
      </geometry>
      <material name="Green"/>
    </visual>
  </link>
  <link name="lower_arm">
    <inertial>
      <origin rpy="0 0 0" xyz="0 -0.5 0"/>
      <mass value="1"/>
      <inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>
    </inertial>
    <visual>
      <origin rpy="1.57079632679 0 0" xyz="0 -0.5 0"/>
      <geometry>
        <cylinder length="1.0" radius="0.1"/>
      </geometry>
      <material name="Blue"/>
    </visual>
  </link>
  <joint name="joint1" type="revolute">
    <parent link="base"/>
    <child link="upper_arm"/>
    <origin rpy="0 0 0" xyz="0 0.0 0"/>
    <axis xyz="0 0 1"/>
    <limit lower="0" upper="0.2" effort="5" velocity="4" />
    <dynamics damping="0.1"/>
  </joint>
  <joint name="joint2" type="revolute">
    <parent link="upper_arm"/>
    <child link="lower_arm"/>
    <origin rpy="0 0 0" xyz="0 -1.0 0"/>
    <axis xyz="0 0 1"/>
    <!-- <limit lower="-1.87" upper="1.87" /> -->
    <dynamics damping="0.1"/>
  </joint>
</robot>

德雷克是否正确遵守关节限制

在模拟过程中,Drake没有严格遵守关节限制。它将关节限制视为弹簧-减振器系统。当接头超过接头限制时,弹簧减振器系统会施加更大的恢复力,将接头推回接头限制范围内

是否有一种方法可以使用API检查这一点,并将其显示在屏幕上。有没有办法从模拟中读取关节状态


你可以使用
信号记录器
系统,一个例子是,你可以构造一个信号记录器,将其连接到机器人状态端口,在模拟之后,你可以读取记录的机器人状态,类似于与Sherm交谈后的

,我认为问题是惯性
ixx,iyy,izz
都是零。我想如果你把惯性改成非零值,那么模拟就会正确


原因是我们使用相邻连杆的质量/惯性特性来估计接头极限的刚度。当惯性为零时,则关节刚度为零。

另请参见:嗯,有趣。。这对我来说是有道理的。我还没有确认,但似乎根本没有接近极限。。。这个GIF显示了我在说什么。。。
// ... includes and using

double target_realtime_rate = 1.0;
double simulation_time = 1000;
double max_time_step = 1.0e-4;
double Kp_ = 1.0;
double Ki_ = 0.0;
double Kd_ = 0.0;

// Fixed path to double pendulum URDF model.
static const char* const kDoublePendulumSdfPath = "double_pendulum/pendulum.urdf";


void DoMain() {
  DRAKE_DEMAND(simulation_time > 0);

  DiagramBuilder<double> builder;

  SceneGraph<double>& scene_graph = *builder.AddSystem<SceneGraph>();
  scene_graph.set_name("scene_graph");

  // Load and parse double pendulum SDF from file into a tree.
  MultibodyPlant<double>* dp = builder.AddSystem<MultibodyPlant<double>>(max_time_step);
  dp->set_name("plant");
  dp->RegisterAsSourceForSceneGraph(&scene_graph);

  Parser parser(dp);
  parser.AddModelFromFile(kDoublePendulumSdfPath);

  // Weld the base link to world frame with no rotation.
  const auto& root_link = dp->GetBodyByName("base");
  dp->AddJoint<WeldJoint>("weld_base", dp->world_body(), std::nullopt,
                          root_link, std::nullopt,
                          RigidTransform<double>::Identity());
  dp->AddJointActuator("a2", dp->GetJointByName("joint2"));
  dp->AddJointActuator("a1", dp->GetJointByName("joint1"));

  // Now the plant is complete.
  dp->Finalize();

  // Create PID Controller.
  const Eigen::VectorXd Kp = Eigen::Vector2d(1,1) * Kp_;
  const Eigen::VectorXd Ki = Eigen::Vector2d(1,1) * Ki_;
  const Eigen::VectorXd Kd = Eigen::Vector2d(1,1) * Kd_;
  const auto* const pid = builder.AddSystem<PidController<double>>(Kp, Ki, Kd);
  builder.Connect(dp->get_state_output_port(),
                  pid->get_input_port_estimated_state());
  builder.Connect(pid->get_output_port_control(),
                  dp->get_actuation_input_port());
  // Set PID desired states.
  auto desired_base_source = builder.AddSystem<ConstantVectorSource<double>>(Eigen::VectorXd::Zero(dp->num_multibody_states()));
  builder.Connect(desired_base_source->get_output_port(),
                  pid->get_input_port_desired_state());

  // Connect plant with scene_graph to get collision information.
  DRAKE_DEMAND(!!dp->get_source_id());
  builder.Connect(dp->get_geometry_poses_output_port(),
                  scene_graph.get_source_pose_port(dp->get_source_id().value()));
  builder.Connect(scene_graph.get_query_output_port(),
                  dp->get_geometry_query_input_port());

  ConnectDrakeVisualizer(&builder, scene_graph);

  auto diagram = builder.Build();
  std::unique_ptr<Context<double>> diagram_context =
      diagram->CreateDefaultContext();

  // Create plant_context to set velocity.
  Context<double>& plant_context =
      diagram->GetMutableSubsystemContext(*dp, diagram_context.get());
  // Set init position.
  Eigen::VectorXd positions = Eigen::VectorXd::Zero(2);
  positions[0] = 0.1;
  positions[1] = 0.4;
  dp->SetPositions(&plant_context, positions);

  Simulator<double> simulator(*diagram, std::move(diagram_context));
  simulator.set_publish_every_time_step(true);
  simulator.set_target_realtime_rate(target_realtime_rate);
  simulator.Initialize();
  simulator.AdvanceTo(simulation_time);
}

int main(int argc, char** argv) {
  DoMain();
  return 0;
}