C#日出/日落与纬度/经度

C#日出/日落与纬度/经度,c#,latitude-longitude,C#,Latitude Longitude,在C#中有没有一种方法可以计算给定的纬度和经度,即太阳在给定的一天内落下和升起的时间?Javascript计算。现在你只需要移植 编辑:计算在现在的源代码中 编辑:是到源代码的直接链接。无需浏览html。从以下信息开始: 我正在用它来编写一个ruby脚本,它仍在制作中。 我很难理解朱利安的多重约会 有一件事很清楚,那就是你应该去寻找准确的太阳凌日时间。 然后减去并加上基于 在你的纬度和太阳赤纬上。哦一定要包括太阳能 中心和地球折射。地球似乎是个魔术师。你需要一个公式,其中包括时间方程,以考

在C#中有没有一种方法可以计算给定的纬度和经度,即太阳在给定的一天内落下和升起的时间?

Javascript计算。现在你只需要移植


编辑:计算在现在的源代码中


编辑:是到源代码的直接链接。无需浏览html。

从以下信息开始:

我正在用它来编写一个ruby脚本,它仍在制作中。 我很难理解朱利安的多重约会

有一件事很清楚,那就是你应该去寻找准确的太阳凌日时间。 然后减去并加上基于 在你的纬度和太阳赤纬上。哦一定要包括太阳能
中心和地球折射。地球似乎是个魔术师。

你需要一个公式,其中包括时间方程,以考虑地球-月球系统绕太阳的偏心轨道。您需要使用具有适当基准点的坐标,如WGS84或NAD27或类似的东西。你需要使用朱利安历法,而不是我们每天使用的那个,这样才能保证这些时间是正确的。这不是一件容易在一秒钟内猜到的事情。我想在我的位置有一个时间,阴影长度等于任意高度。当太阳在正午前后高于地平线60度时,这种情况应该每天发生两次。另外,据我所知,你只需要每年增加一天就可以得到恒星时间,所以如果你想增加你的时钟频率X 366.25/365.25,你现在可能有一个恒星时钟而不是民用时钟???“数学是有权势的人编写宇宙的语言”

另一个好的JS实现是


代码行的数量是可管理的,因此移植到其他语言(C#)当然是可能的。

我制作了一个快速Python脚本来实现这一点:

我还没有将它封装在一个类中,但它可能对其他人有用



编辑:开源太棒了,因为提交了基本脚本,有人将其包装在一个模块中,另一个添加了cli接口!感谢mbideau和nfischer的贡献

我使用NAA javascript和c#在c#中创建了这个库

我对这两个站点进行了测试,它显示的时间与站点显示的时间完全相同


对此公认的答案是JavaScript实现,它不适合我的应用程序,因为我需要用C#进行计算

我使用了这个C代码:,我在这里根据日出/日落时间对其进行了验证:


如果我将秒舍入到最接近的分钟,C#实现的日出和日落时间将与timeanddate.com上显示的相应值匹配,包括夏令时的情况。尽管代码有点难以理解(除非您也想要月相数据),所以我将对其进行重构,以实现我现在所需的具体操作。数字是正确的。

如果您喜欢外部服务,您可以使用这个漂亮且免费的日出和日落时间API:

我已经使用它的几个项目,它的工作非常好,数据似乎非常准确。只需执行一个HTTP GET请求

接受的参数:

  • 纬度:以十进制度数表示的纬度。必需的
  • lng:以十进制度数表示的经度。必需的
  • 日期:YYYY-MM-DD格式的日期。还接受其他日期格式,甚至是相对日期格式。如果不存在,则日期默认为当前日期。可选
  • 回调:JSONP响应的回调函数名。可选
  • 格式化:0或1(默认为1)。响应中的时间值将按照ISO 8601表示,日长将以秒表示。可选

响应包括日出和日落时间以及黄昏时间。

此API似乎适合我:


VB.Net版的dotsa答案,也可以自动确定时区

输出(通过观看今晚的日落检查):

Main.VB:

Module Main

Sub Main()

    ' http://www.timeanddate.com/sun/usa/seattle
    ' http://www.esrl.noaa.gov/gmd/grad/solcalc/

    ' Vessy, Switzerland
    Dim latitude As Double = 46.17062
    Dim longitude As Double = 6.161667
    Dim dst As Boolean = True
    Dim timehere As DateTime = DateTime.Now

    Console.WriteLine("It is currently {0:HH:mm:ss} UTC", DateTime.UtcNow)
    Console.WriteLine("The time here, at {0}°,{1}° is {2:HH:mm:ss}", latitude, longitude, timehere)
    Dim local As TimeZoneInfo = TimeZoneInfo.Local
    Dim zone As Integer = local.BaseUtcOffset().TotalHours

    If local.SupportsDaylightSavingTime Then
        Dim standard As String = local.StandardName
        Dim daylight As String = local.DaylightName
        dst = local.IsDaylightSavingTime(timehere)
        Dim current As String = IIf(dst, daylight, standard)
        Console.WriteLine("Daylight-saving time is supported here. Current offset {0:+0} hours, {1}", zone, current)
    Else
        Console.WriteLine("Daylight-saving time is not supported here")
    End If

    System.Console.WriteLine("Sunrise today {0}", Sunrises(latitude, longitude))
    System.Console.WriteLine("Sunset  today {0}", Sunsets(latitude, longitude))
    System.Console.ReadLine()
End Sub

End Module
Sun.vb:

Public Module Sun
' Get sunrise time at latitude, longitude using local system timezone
Function Sunrises(latitude As Double, longitude As Double) As DateTime
    Dim julian As Double = JulianDay(DateTime.Now)
    Dim rises As Double = SunRiseUTC(julian, latitude, longitude)
    Dim timehere As DateTime = DateTime.Now
    Dim local As TimeZoneInfo = TimeZoneInfo.Local
    Dim dst As Boolean = local.IsDaylightSavingTime(timehere)
    Dim zone As Integer = local.BaseUtcOffset().TotalHours
    Dim result As DateTime = getDateTime(rises, zone, timehere, dst)
    Return result
End Function
' Get sunset time at latitude, longitude using local system timezone
Function Sunsets(latitude As Double, longitude As Double) As DateTime
    Dim julian As Double = JulianDay(DateTime.Now)
    Dim rises As Double = SunSetUTC(julian, latitude, longitude)
    Dim timehere As DateTime = DateTime.Now
    Dim local As TimeZoneInfo = TimeZoneInfo.Local
    Dim dst As Boolean = local.IsDaylightSavingTime(timehere)
    Dim zone As Integer = local.BaseUtcOffset().TotalHours
    Dim result As DateTime = getDateTime(rises, zone, timehere, dst)
    Return result
End Function
' Convert radian angle to degrees
Public Function Degrees(angleRad As Double) As Double
    Return (180.0 * angleRad / Math.PI)
End Function
' Convert degree angle to radians
Public Function Radians(angleDeg As Double) As Double
    Return (Math.PI * angleDeg / 180.0)
End Function
'* Name: JulianDay  
'* Type: Function   
'* Purpose: Julian day from calendar day    
'* Arguments:   
'* year : 4 digit year  
'* month: January = 1   
'* day : 1 - 31 
'* Return value:    
'* The Julian day corresponding to the date 
'* Note:    
'* Number is returned for start of day. Fractional days should be   
'* added later. 
Public Function JulianDay(year As Integer, month As Integer, day As Integer) As Double
    If month <= 2 Then
        year -= 1
        month += 12
    End If
    Dim A As Double = Math.Floor(year / 100.0)
    Dim B As Double = 2 - A + Math.Floor(A / 4)

    Dim julian As Double = Math.Floor(365.25 * (year + 4716)) + Math.Floor(30.6001 * (month + 1)) + day + B - 1524.5
    Return julian
End Function

Public Function JulianDay([date] As DateTime) As Double
    Return JulianDay([date].Year, [date].Month, [date].Day)
End Function

'***********************************************************************/
'* Name: JulianCenturies    
'* Type: Function   
'* Purpose: convert Julian Day to centuries since J2000.0.  
'* Arguments:   
'* julian : the Julian Day to convert   
'* Return value:    
'* the T value corresponding to the Julian Day  
'***********************************************************************/

Public Function JulianCenturies(julian As Double) As Double
    Dim T As Double = (julian - 2451545.0) / 36525.0
    Return T
End Function


'***********************************************************************/
'* Name: JulianDayFromJulianCentury 
'* Type: Function   
'* Purpose: convert centuries since J2000.0 to Julian Day.  
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* the Julian Day corresponding to the t value  
'***********************************************************************/

Public Function JulianDayFromJulianCentury(t As Double) As Double
    Dim julian As Double = t * 36525.0 + 2451545.0
    Return julian
End Function


'***********************************************************************/
'* Name: calGeomMeanLongSun 
'* Type: Function   
'* Purpose: calculate the Geometric Mean Longitude of the Sun   
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* the Geometric Mean Longitude of the Sun in degrees   
'***********************************************************************/

Public Function GemoetricMeanLongitude(t As Double) As Double
    Dim L0 As Double = 280.46646 + t * (36000.76983 + 0.0003032 * t)
    While L0 > 360.0
        L0 -= 360.0
    End While
    While L0 < 0.0
        L0 += 360.0
    End While
    Return L0
    ' in degrees
End Function


'***********************************************************************/
'* Name: calGeomAnomalySun  
'* Type: Function   
'* Purpose: calculate the Geometric Mean Anomaly of the Sun 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* the Geometric Mean Anomaly of the Sun in degrees 
'***********************************************************************/

Public Function GemoetricMeanAnomaly(t As Double) As Double
    Dim M As Double = 357.52911 + t * (35999.05029 - 0.0001537 * t)
    Return M
    ' in degrees
End Function

'***********************************************************************/
'* Name: EarthOrbitEccentricity 
'* Type: Function   
'* Purpose: calculate the eccentricity of earth's orbit 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* the unitless eccentricity    
'***********************************************************************/


Public Function EarthOrbitEccentricity(t As Double) As Double
    Dim e As Double = 0.016708634 - t * (0.000042037 + 0.0000001267 * t)
    Return e
    ' unitless
End Function

'***********************************************************************/
'* Name: SunCentre  
'* Type: Function   
'* Purpose: calculate the equation of center for the sun    
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* in degrees   
'***********************************************************************/


Public Function SunCentre(t As Double) As Double
    Dim m As Double = GemoetricMeanAnomaly(t)

    Dim mrad As Double = Radians(m)
    Dim sinm As Double = Math.Sin(mrad)
    Dim sin2m As Double = Math.Sin(mrad + mrad)
    Dim sin3m As Double = Math.Sin(mrad + mrad + mrad)

    Dim C As Double = sinm * (1.914602 - t * (0.004817 + 0.000014 * t)) + sin2m * (0.019993 - 0.000101 * t) + sin3m * 0.000289
    Return C
    ' in degrees
End Function

'***********************************************************************/
'* Name: SunTrueLongitude   
'* Type: Function   
'* Purpose: calculate the true longitude of the sun 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun's true longitude in degrees  
'***********************************************************************/


Public Function SunTrueLongitude(t As Double) As Double
    Dim l0 As Double = GemoetricMeanLongitude(t)
    Dim c As Double = SunCentre(t)

    Dim O As Double = l0 + c
    Return O
    ' in degrees
End Function

'***********************************************************************/
'* Name: SunTrueAnomaly 
'* Type: Function   
'* Purpose: calculate the true anamoly of the sun   
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun's true anamoly in degrees    
'***********************************************************************/

Public Function SunTrueAnomaly(t As Double) As Double
    Dim m As Double = GemoetricMeanAnomaly(t)
    Dim c As Double = SunCentre(t)

    Dim v As Double = m + c
    Return v
    ' in degrees
End Function

'***********************************************************************/
'* Name: SunDistanceAU  
'* Type: Function   
'* Purpose: calculate the distance to the sun in AU 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun radius vector in AUs 
'***********************************************************************/

Public Function SunDistanceAU(t As Double) As Double
    Dim v As Double = SunTrueAnomaly(t)
    Dim e As Double = EarthOrbitEccentricity(t)

    Dim R As Double = (1.000001018 * (1 - e * e)) / (1 + e * Math.Cos(Radians(v)))
    Return R
    ' in AUs
End Function

'***********************************************************************/
'* Name: SunApparentLongitude   
'* Type: Function   
'* Purpose: calculate the apparent longitude of the sun 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun's apparent longitude in degrees  
'***********************************************************************/

Public Function SunApparentLongitude(t As Double) As Double
    Dim o As Double = SunTrueLongitude(t)

    Dim omega As Double = 125.04 - 1934.136 * t
    Dim lambda As Double = o - 0.00569 - 0.00478 * Math.Sin(Radians(omega))
    Return lambda
    ' in degrees
End Function

'***********************************************************************/
'* Name: MeanObliquityOfEcliptic    
'* Type: Function   
'* Purpose: calculate the mean obliquity of the ecliptic    
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* mean obliquity in degrees    
'***********************************************************************/

Public Function MeanObliquityOfEcliptic(t As Double) As Double
    Dim seconds As Double = 21.448 - t * (46.815 + t * (0.00059 - t * (0.001813)))
    Dim e0 As Double = 23.0 + (26.0 + (seconds / 60.0)) / 60.0
    Return e0
    ' in degrees
End Function

'***********************************************************************/
'* Name: calcObliquityCorrection    
'* Type: Function   
'* Purpose: calculate the corrected obliquity of the ecliptic   
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* corrected obliquity in degrees   
'***********************************************************************/

Public Function calcObliquityCorrection(t As Double) As Double
    Dim e0 As Double = MeanObliquityOfEcliptic(t)

    Dim omega As Double = 125.04 - 1934.136 * t
    Dim e As Double = e0 + 0.00256 * Math.Cos(Radians(omega))
    Return e
    ' in degrees
End Function

'***********************************************************************/
'* Name: SunRightAscension  
'* Type: Function   
'* Purpose: calculate the right ascension of the sun    
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun's right ascension in degrees 
'***********************************************************************/

Public Function SunRightAscension(t As Double) As Double
    Dim e As Double = calcObliquityCorrection(t)
    Dim lambda As Double = SunApparentLongitude(t)

    Dim tananum As Double = (Math.Cos(Radians(e)) * Math.Sin(Radians(lambda)))
    Dim tanadenom As Double = (Math.Cos(Radians(lambda)))
    Dim alpha As Double = Degrees(Math.Atan2(tananum, tanadenom))
    Return alpha
    ' in degrees
End Function

'***********************************************************************/
'* Name: SunDeclination 
'* Type: Function   
'* Purpose: calculate the declination of the sun    
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun's declination in degrees 
'***********************************************************************/

Public Function SunDeclination(t As Double) As Double
    Dim e As Double = calcObliquityCorrection(t)
    Dim lambda As Double = SunApparentLongitude(t)

    Dim sint As Double = Math.Sin(Radians(e)) * Math.Sin(Radians(lambda))
    Dim theta As Double = Degrees(Math.Asin(sint))
    Return theta
    ' in degrees
End Function

'***********************************************************************/
'* Name: TrueSolarToMeanSolar   
'* Type: Function   
'* Purpose: calculate the difference between true solar time and mean   
'*   solar time 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* equation of time in minutes of time  
'***********************************************************************/

Public Function TrueSolarToMeanSolar(t As Double) As Double
    Dim epsilon As Double = calcObliquityCorrection(t)
    Dim l0 As Double = GemoetricMeanLongitude(t)
    Dim e As Double = EarthOrbitEccentricity(t)
    Dim m As Double = GemoetricMeanAnomaly(t)

    Dim y As Double = Math.Tan(Radians(epsilon) / 2.0)
    y *= y

    Dim sin2l0 As Double = Math.Sin(2.0 * Radians(l0))
    Dim sinm As Double = Math.Sin(Radians(m))
    Dim cos2l0 As Double = Math.Cos(2.0 * Radians(l0))
    Dim sin4l0 As Double = Math.Sin(4.0 * Radians(l0))
    Dim sin2m As Double = Math.Sin(2.0 * Radians(m))

    Dim Etime As Double = y * sin2l0 - 2.0 * e * sinm + 4.0 * e * y * sinm * cos2l0 - 0.5 * y * y * sin4l0 - 1.25 * e * e * sin2m

    Return Degrees(Etime) * 4.0
    ' in minutes of time
End Function

'***********************************************************************/
'* Name: SunriseHourAngle   
'* Type: Function   
'* Purpose: calculate the hour angle of the sun at sunrise for the  
'*   latitude   
'* Arguments:   
'* lat : latitude of observer in degrees    
'*  solarDec : declination angle of sun in degrees  
'* Return value:    
'* hour angle of sunrise in radians 
'***********************************************************************/

Public Function SunriseHourAngle(lat As Double, solarDec As Double) As Double
    Dim latRad As Double = Radians(lat)
    Dim sdRad As Double = Radians(solarDec)

    Dim HAarg As Double = (Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad))

    Dim HA As Double = (Math.Acos(Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad)))

    Return HA
    ' in radians
End Function

'***********************************************************************/
'* Name: SunsetHourAngle    
'* Type: Function   
'* Purpose: calculate the hour angle of the sun at sunset for the   
'*   latitude   
'* Arguments:   
'* lat : latitude of observer in degrees    
'*  solarDec : declination angle of sun in degrees  
'* Return value:    
'* hour angle of sunset in radians  
'***********************************************************************/

Public Function SunsetHourAngle(lat As Double, solarDec As Double) As Double
    Dim latRad As Double = Radians(lat)
    Dim sdRad As Double = Radians(solarDec)

    Dim HAarg As Double = (Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad))

    Dim HA As Double = (Math.Acos(Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad)))

    Return -HA
    ' in radians
End Function


'***********************************************************************/
'* Name: SunRiseUTC 
'* Type: Function   
'* Purpose: calculate the Universal Coordinated Time (UTC) of sunrise   
'*   for the given day at the given location on earth   
'* Arguments:   
'* julian : julian day  
'* latitude : latitude of observer in degrees   
'* longitude : longitude of observer in degrees 
'* Return value:    
'* time in minutes from zero Z  
'***********************************************************************/

'Public  Function SunRiseUTC(julian As Double, latitude As Double, longitude As Double) As Double
'    Dim t As Double = JulianCenturies(julian)

'    ' *** Find the time of solar noon at the location, and use
'    ' that declination. This is better than start of the 
'    ' Julian day

'    Dim noonmin As Double = SolarNoonUTC(t, longitude)
'    Dim tnoon As Double = JulianCenturies(julian + noonmin / 1440.0)

'    ' *** First pass to approximate sunrise (using solar noon)

'    Dim eqTime As Double = TrueSolarToMeanSolar(tnoon)
'    Dim solarDec As Double = SunDeclination(tnoon)
'    Dim hourAngle As Double = SunriseHourAngle(latitude, solarDec)

'    Dim delta As Double = longitude - Degrees(hourAngle)
'    Dim timeDiff As Double = 4 * delta
'    ' in minutes of time
'    Dim timeUTC As Double = 720 + timeDiff - eqTime
'    ' in minutes
'    ' alert("eqTime = " + eqTime + "\nsolarDec = " + solarDec + "\ntimeUTC = " + timeUTC);

'    ' *** Second pass includes fractional julianay in gamma calc

'    Dim newt As Double = JulianCenturies(JulianDayFromJulianCentury(t) + timeUTC / 1440.0)
'    eqTime = TrueSolarToMeanSolar(newt)
'    solarDec = SunDeclination(newt)
'    hourAngle = SunriseHourAngle(latitude, solarDec)
'    delta = longitude - Degrees(hourAngle)
'    timeDiff = 4 * delta
'    timeUTC = 720 + timeDiff - eqTime
'    ' in minutes
'    ' alert("eqTime = " + eqTime + "\nsolarDec = " + solarDec + "\ntimeUTC = " + timeUTC);

'    Return timeUTC
'End Function

'***********************************************************************/
'* Name: SolarNoonUTC   
'* Type: Function   
'* Purpose: calculate the Universal Coordinated Time (UTC) of solar 
'*   noon for the given day at the given location on earth  
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* longitude : longitude of observer in degrees 
'* Return value:    
'* time in minutes from zero Z  
'***********************************************************************/

Public Function SolarNoonUTC(t As Double, longitude As Double) As Double
    ' First pass uses approximate solar noon to calculate eqtime
    Dim tnoon As Double = JulianCenturies(JulianDayFromJulianCentury(t) + longitude / 360.0)
    Dim eqTime As Double = TrueSolarToMeanSolar(tnoon)
    Dim solNoonUTC As Double = 720 + (longitude * 4) - eqTime
    ' min
    Dim newt As Double = JulianCenturies(JulianDayFromJulianCentury(t) - 0.5 + solNoonUTC / 1440.0)

    eqTime = TrueSolarToMeanSolar(newt)
    ' double solarNoonDec = SunDeclination(newt);
    solNoonUTC = 720 + (longitude * 4) - eqTime
    ' min
    Return solNoonUTC
End Function

'***********************************************************************/
'* Name: SunSetUTC  
'* Type: Function   
'* Purpose: calculate the Universal Coordinated Time (UTC) of sunset    
'*   for the given day at the given location on earth   
'* Arguments:   
'* julian : julian day  
'* latitude : latitude of observer in degrees   
'* longitude : longitude of observer in degrees 
'* Return value:    
'* time in minutes from zero Z  
'***********************************************************************/

Public Function SunSetUTC(julian As Double, latitude As Double, longitude As Double) As Double
    Dim t = JulianCenturies(julian)
    Dim eqTime = TrueSolarToMeanSolar(t)
    Dim solarDec = SunDeclination(t)
    Dim hourAngle = SunriseHourAngle(latitude, solarDec)
    hourAngle = -hourAngle
    Dim delta = longitude + Degrees(hourAngle)
    Dim timeUTC = 720 - (4.0 * delta) - eqTime
    ' in minutes
    Return timeUTC
End Function

Public Function SunRiseUTC(julian As Double, latitude As Double, longitude As Double) As Double
    Dim t = JulianCenturies(julian)
    Dim eqTime = TrueSolarToMeanSolar(t)
    Dim solarDec = SunDeclination(t)
    Dim hourAngle = SunriseHourAngle(latitude, solarDec)
    Dim delta = longitude + Degrees(hourAngle)
    Dim timeUTC = 720 - (4.0 * delta) - eqTime
    ' in minutes
    Return timeUTC
End Function

Public Function getTimeString(time As Double, timezone As Integer, julian As Double, dst As Boolean) As String
    Dim timeLocal = time + (timezone * 60.0)
    Dim riseT = JulianCenturies(julian + time / 1440.0)
    timeLocal += (If((dst), 60.0, 0.0))
    Return getTimeString(timeLocal)
End Function

Public Function getDateTime(time As Double, timezone As Integer, [date] As DateTime, dst As Boolean) As System.Nullable(Of DateTime)
    Dim julian As Double = JulianDay([date])
    Dim timeLocal = time + (timezone * 60.0)
    Dim riseT = JulianCenturies(julian + time / 1440.0)
    timeLocal += (If((dst), 60.0, 0.0))
    Return getDateTime(timeLocal, [date])
End Function

Private Function getTimeString(minutes As Double) As String

    Dim output As String = ""

    If (minutes >= 0) AndAlso (minutes < 1440) Then
        Dim floatHour = minutes / 60.0
        Dim hour = Math.Floor(floatHour)
        Dim floatMinute = 60.0 * (floatHour - Math.Floor(floatHour))
        Dim minute = Math.Floor(floatMinute)
        Dim floatSec = 60.0 * (floatMinute - Math.Floor(floatMinute))
        Dim second = Math.Floor(floatSec + 0.5)
        If second > 59 Then
            second = 0
            minute += 1
        End If
        If (second >= 30) Then
            minute += 1
        End If
        If minute > 59 Then
            minute = 0
            hour += 1
        End If
        output = [String].Format("{0:00}:{1:00}", hour, minute)
    Else
        Return "error"
    End If

    Return output
End Function

Private Function getDateTime(minutes As Double, [date] As DateTime) As System.Nullable(Of DateTime)

    Dim retVal As System.Nullable(Of DateTime) = Nothing

    If (minutes >= 0) AndAlso (minutes < 1440) Then
        Dim floatHour = minutes / 60.0
        Dim hour = Math.Floor(floatHour)
        Dim floatMinute = 60.0 * (floatHour - Math.Floor(floatHour))
        Dim minute = Math.Floor(floatMinute)
        Dim floatSec = 60.0 * (floatMinute - Math.Floor(floatMinute))
        Dim second = Math.Floor(floatSec + 0.5)
        If second > 59 Then
            second = 0
            minute += 1
        End If
        If (second >= 30) Then
            minute += 1
        End If
        If minute > 59 Then
            minute = 0
            hour += 1
        End If
        Return New DateTime([date].Year, [date].Month, [date].Day, CInt(hour), CInt(minute), CInt(second))
    Else
        Return retVal
    End If
End Function
End Module
Sun公共模块
'使用本地系统时区获取纬度和经度的日出时间
函数日出(纬度加倍,经度加倍)作为日期时间
Dim julian As Double=JulianDay(DateTime.Now)
Dim上升为双精度=UTC(朱利安、纬度、经度)
Dim timehere As DateTime=DateTime.Now
将本地设置为TimeZoneInfo=TimeZoneInfo.local
Dim dst作为布尔值=local.IsDaylightSavingTime(timehere)
Dim分区为整数=local.BaseUtcOffset().TotalHours
Dim结果为DateTime=getDateTime(上升、区域、时间、dst)
返回结果
端函数
'使用本地系统时区获取纬度、经度的日落时间
将日落(纬度加倍,经度加倍)作为日期时间
Dim julian As Double=JulianDay(DateTime.Now)
暗度上升为Double=SunSetUTC(朱利安、纬度、经度)
Dim timehere As DateTime=DateTime.Now
将本地设置为TimeZoneInfo=TimeZoneInfo.local
Dim dst作为布尔值=local.IsDaylightSavingTime(timehere)
Dim分区为整数=local.BaseUtcOffset().TotalHours
Dim结果为DateTime=getDateTime(上升、区域、时间、dst)
返回结果
端函数
'将弧度角度转换为度
公共职能学位(双学位)双学位
返回(180.0*angelrad/Math.PI)
端函数
'将度角转换为弧度
公共功能弧度(角度度为双精度)为双精度
返回(数学PI*角度度/180.0)
端函数
*姓名:朱丽安代
'*类型:函数
“*目的:朱利安日自公历日起
“*论点:
“*年份:4位数年份
“*月份:一月=1
*日期:1-31
'*返回值:
“*与日期相对应的朱利安日
“*注:
“*返回当天开始时的编号。分数天应该是
“*稍后添加。
公共函数JulianDay(年为整数,月为I)
Celestial cel = Celestial.CalculateCelestialTimes(85.57682, -70.75678, new DateTime(2017,8,21));
Console.WriteLine(cel.SunRise.Value.ToString());
            SolarTimes solarTimes = new SolarTimes(DateTime.Now, la, lo);
            DateTime sr = solarTimes.Sunrise;
            DateTime dt = Convert.ToDateTime(sr);
            textblockb.Text = dt.ToString("h:mm:ss");
Install-Package SolarCalculator -Version 2.0.2