Java 固定大小HashMap的最佳容量和负载系数是多少?

Java 固定大小HashMap的最佳容量和负载系数是多少?,java,hashmap,Java,Hashmap,我试图找出一个特定情况下的最佳容量和负载系数。我想我已经了解了要点,但我还是要感谢比我更了解情况的人的确认 如果我知道我的HashMap将填充到包含(比如)100个对象,并且大部分时间都有100个对象,那么我猜最佳值是初始容量100和负载系数1?或者我需要容量101,或者还有其他问题吗 编辑:好的,我留出几个小时做了一些测试。结果如下: 奇怪的是,容量、容量+1、容量+2、容量-1甚至容量-10都产生完全相同的结果。我预计至少1号和10号容量会产生更糟糕的结果 使用初始容量(而不是使用默认值1

我试图找出一个特定情况下的最佳容量和负载系数。我想我已经了解了要点,但我还是要感谢比我更了解情况的人的确认

如果我知道我的HashMap将填充到包含(比如)100个对象,并且大部分时间都有100个对象,那么我猜最佳值是初始容量100和负载系数1?或者我需要容量101,或者还有其他问题吗

编辑:好的,我留出几个小时做了一些测试。结果如下:

  • 奇怪的是,容量、容量+1、容量+2、容量-1甚至容量-10都产生完全相同的结果。我预计至少1号和10号容量会产生更糟糕的结果
  • 使用初始容量(而不是使用默认值16)可以显著提高put()性能,最多可以提高30%
  • 对于少量对象,使用负载因子1可以获得相同的性能,对于大量对象(>100000)可以获得更好的性能。然而,这并不能与物体的数量成比例地提高;我怀疑还有其他因素会影响结果
  • get()的性能对于不同数量的对象/容量有点不同,但尽管它可能会因情况的不同而略有不同,但通常不受初始容量或负载因子的影响
编辑2:我也添加了一些图表。这里的例子说明了负载因子0.75和1之间的区别,在初始化HashMap并将其填充到最大容量的情况下。在y刻度上是以毫秒为单位的时间(越低越好),x刻度是大小(对象数)。由于大小呈线性变化,因此所需时间也呈线性增长

那么,让我们看看我得到了什么。以下两个图表显示了负载系数的差异。第一个图表显示当HashMap填充到容量时会发生什么;负载系数0.75因大小调整而性能更差。然而,情况并不总是更糟,还有各种各样的颠簸和跳跃——我想GC在这方面起着重要作用。负载系数1.25的性能与1相同,因此不包括在图表中

该图表证明0.75因尺寸调整而更差;如果我们将HashMap填充到一半容量,0.75不是更糟,只是。。。不同的(并且它应该使用更少的内存,并且具有更好的迭代性能)

我还想展示一件事。这是为所有三个负载因子和不同的HashMap大小获取性能。除负载系数1的一个尖峰外,保持恒定,变化不大。我真的很想知道那是什么(可能是GC,但谁知道呢)

以下是相关人员的代码:

import java.util.HashMap;
import java.util.Map;

public class HashMapTest {

  // capacity - numbers high as 10000000 require -mx1536m -ms1536m JVM parameters
  public static final int CAPACITY = 10000000;
  public static final int ITERATIONS = 10000;

  // set to false to print put performance, or to true to print get performance
  boolean doIterations = false;

  private Map<Integer, String> cache;

  public void fillCache(int capacity) {
    long t = System.currentTimeMillis();
    for (int i = 0; i <= capacity; i++)
      cache.put(i, "Value number " + i);

    if (!doIterations) {
      System.out.print(System.currentTimeMillis() - t);
      System.out.print("\t");
    }
  }

  public void iterate(int capacity) {
    long t = System.currentTimeMillis();

    for (int i = 0; i <= ITERATIONS; i++) {
      long x = Math.round(Math.random() * capacity);
      String result = cache.get((int) x);
    }

    if (doIterations) {
      System.out.print(System.currentTimeMillis() - t);
      System.out.print("\t");
    }
  }

  public void test(float loadFactor, int divider) {
    for (int i = 10000; i <= CAPACITY; i+= 10000) {
      cache = new HashMap<Integer, String>(i, loadFactor);
      fillCache(i / divider);
      if (doIterations)
        iterate(i / divider);
    }
    System.out.println();
  }

  public static void main(String[] args) {
    HashMapTest test = new HashMapTest();

    // fill to capacity
    test.test(0.75f, 1);
    test.test(1, 1);
    test.test(1.25f, 1);

    // fill to half capacity
    test.test(0.75f, 2);
    test.test(1, 2);
    test.test(1.25f, 2);
  }

}
import java.util.HashMap;
导入java.util.Map;
公共类HashMapTest{
//容量-高达10000000的数字需要-mx1536m-ms1536m JVM参数
公共静态最终整数容量=10000000;
公共静态最终整数迭代=10000;
//设置为false以打印put性能,或设置为true以打印get性能
布尔doIterations=false;
私有地图缓存;
公共空缓存(整数容量){
long t=System.currentTimeMillis();

对于(inti=0;i只需使用
101
。我不确定是否需要它,但可能不值得费心去确定

…只需添加
1


编辑:为我的答案提供一些理由

首先,我假设您的
HashMap
不会超过
100
;如果超过100,您应该保持负载因子不变。同样,如果您关心的是性能,请保持负载因子不变。如果您关心的是内存,您可以通过设置静态大小来节省一些内存。如果您大量填充,这可能值得一做内存中的内容;例如,正在存储许多映射,或者正在创建堆空间大小的映射

其次,我选择值
101
,因为它提供了更好的可读性……如果我在查看您的代码后发现您已将初始容量设置为
100
,并且正在加载
100
元素,我将不得不通读Javadoc,以确保它在达到精度时不会调整大小y
100
。当然,我在那里找不到答案,所以我必须查看源代码。这不值得…只需将其留在
101
中,每个人都很高兴,没有人查看
java.util.HashMap
的源代码

第三,将
HashMap
设置为负载因子为
1
时所期望的准确容量的说法是不正确的,即使它是粗体的

…如果你有<代码> N< /代码>桶,你随机地把<代码> N< /代码>条目放入<代码> N< /代码>桶中,YEP,你将在同一个桶中结束项目,当然……但这不是世界末日…实际上,它只是一对夫妇的比较而已。事实上,当你考虑ALT时,几乎没有什么不同。ernative正在将

n
项分配到
n/0.75
存储桶中

不用相信我的话


快速测试代码:

static Random r = new Random();

public static void main(String[] args){
    int[] tests = {100, 1000, 10000};
    int runs = 5000;

    float lf_sta = 1f;
    float lf_dyn = 0.75f;

    for(int t:tests){
        System.err.println("=======Test Put "+t+"");
        HashMap<Integer,Integer> map = new HashMap<Integer,Integer>();
        long norm_put = testInserts(map, t, runs);
        System.err.print("Norm put:"+norm_put+" ms. ");

        int cap_sta = t;
        map = new HashMap<Integer,Integer>(cap_sta, lf_sta);
        long sta_put = testInserts(map, t, runs);
        System.err.print("Static put:"+sta_put+" ms. ");

        int cap_dyn = (int)Math.ceil((float)t/lf_dyn);
        map = new HashMap<Integer,Integer>(cap_dyn, lf_dyn);
        long dyn_put = testInserts(map, t, runs);
        System.err.println("Dynamic put:"+dyn_put+" ms. ");
    }

    for(int t:tests){
        System.err.println("=======Test Get (hits) "+t+"");
        HashMap<Integer,Integer> map = new HashMap<Integer,Integer>();
        fill(map, t);
        long norm_get_hits = testGetHits(map, t, runs);
        System.err.print("Norm get (hits):"+norm_get_hits+" ms. ");

        int cap_sta = t;
        map = new HashMap<Integer,Integer>(cap_sta, lf_sta);
        fill(map, t);
        long sta_get_hits = testGetHits(map, t, runs);
        System.err.print("Static get (hits):"+sta_get_hits+" ms. ");

        int cap_dyn = (int)Math.ceil((float)t/lf_dyn);
        map = new HashMap<Integer,Integer>(cap_dyn, lf_dyn);
        fill(map, t);
        long dyn_get_hits = testGetHits(map, t, runs);
        System.err.println("Dynamic get (hits):"+dyn_get_hits+" ms. ");
    }

    for(int t:tests){
        System.err.println("=======Test Get (Rand) "+t+"");
        HashMap<Integer,Integer> map = new HashMap<Integer,Integer>();
        fill(map, t);
        long norm_get_rand = testGetRand(map, t, runs);
        System.err.print("Norm get (rand):"+norm_get_rand+" ms. ");

        int cap_sta = t;
        map = new HashMap<Integer,Integer>(cap_sta, lf_sta);
        fill(map, t);
        long sta_get_rand = testGetRand(map, t, runs);
        System.err.print("Static get (rand):"+sta_get_rand+" ms. ");

        int cap_dyn = (int)Math.ceil((float)t/lf_dyn);
        map = new HashMap<Integer,Integer>(cap_dyn, lf_dyn);
        fill(map, t);
        long dyn_get_rand = testGetRand(map, t, runs);
        System.err.println("Dynamic get (rand):"+dyn_get_rand+" ms. ");
    }
}

public static long testInserts(HashMap<Integer,Integer> map, int test, int runs){
    long b4 = System.currentTimeMillis();

    for(int i=0; i<runs; i++){
        fill(map, test);
        map.clear();
    }
    return System.currentTimeMillis()-b4;
}

public static void fill(HashMap<Integer,Integer> map, int test){
    for(int j=0; j<test; j++){
        if(map.put(r.nextInt(), j)!=null){
            j--;
        }
    }
}

public static long testGetHits(HashMap<Integer,Integer> map, int test, int runs){
    long b4 = System.currentTimeMillis();

    ArrayList<Integer> keys = new ArrayList<Integer>();
    keys.addAll(map.keySet());

    for(int i=0; i<runs; i++){
        for(int j=0; j<test; j++){
            keys.get(r.nextInt(keys.size()));
        }
    }
    return System.currentTimeMillis()-b4;
}

public static long testGetRand(HashMap<Integer,Integer> map, int test, int runs){
    long b4 = System.currentTimeMillis();

    for(int i=0; i<runs; i++){
        for(int j=0; j<test; j++){
            map.get(r.nextInt());
        }
    }
    return System.currentTimeMillis()-b4;
}
=======Test Put 100
Norm put:78 ms. Static put:78 ms. Dynamic put:62 ms. 
=======Test Put 1000
Norm put:764 ms. Static put:763 ms. Dynamic put:748 ms. 
=======Test Put 10000
Norm put:12921 ms. Static put:12889 ms. Dynamic put:12873 ms. 
=======Test Get (hits) 100
Norm get (hits):47 ms. Static get (hits):31 ms. Dynamic get (hits):32 ms. 
=======Test Get (hits) 1000
Norm get (hits):327 ms. Static get (hits):328 ms. Dynamic get (hits):343 ms. 
=======Test Get (hits) 10000
Norm get (hits):3304 ms. Static get (hits):3366 ms. Dynamic get (hits):3413 ms. 
=======Test Get (Rand) 100
Norm get (rand):63 ms. Static get (rand):46 ms. Dynamic get (rand):47 ms. 
=======Test Get (Rand) 1000
Norm get (rand):483 ms. Static get (rand):499 ms. Dynamic get (rand):483 ms. 
=======Test Get (Rand) 10000
Norm get (rand):5190 ms. Static get (rand):5362 ms. Dynamic get (rand):5236 ms. 
关于:↑ — 关于这件事有很多建议→||← 不同设置之间的差异很大



关于我的原始答案(第一条水平线上方的那一位),这是故意装腔作势的,因为在大多数情况下,
HashMap
JavaDoc中的

作为一般规则,默认加载因子(.75)在时间和空间成本之间提供了一个很好的折衷。较高的值会减少空间开销,但会增加查找成本(反映在HashMap类的大多数操作中,包括get和put)。在设置其输入时,应考虑地图中的预期条目数及其负载系数
package hashmaptest;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;

public class HashMapTest {

    private static final List<Result> results = new ArrayList<Result>();

    public static void main(String[] args) throws IOException {

        //First entry of each array is the sample collection size, subsequent entries
        //are the hash limits
        final int[][] sampleSizesAndHashLimits = new int[][] {
            {100, 50, 90, 100},
            {1000, 500, 900, 990, 1000},
            {100000, 10000, 90000, 99000, 100000}
        };
        final double[] initialCapacityFactors = new double[] {0.5, 0.75, 1.0, 1.25, 1.5, 2.0};
        final float[] loadFactors = new float[] {0.5f, 0.75f, 1.0f, 1.25f};

        //Doing a warmup run to eliminate JIT influence
        for(int[] sizeAndLimits : sampleSizesAndHashLimits) {
            int size = sizeAndLimits[0];
            for(int i = 1; i < sizeAndLimits.length; ++i) {
                int limit = sizeAndLimits[i];
                for(double initCapacityFactor : initialCapacityFactors) {
                    for(float loadFactor : loadFactors) {
                        runTest(limit, size, initCapacityFactor, loadFactor);
                    }
                }
            }

        }

        results.clear();

        //Now for the real thing...
        for(int[] sizeAndLimits : sampleSizesAndHashLimits) {
            int size = sizeAndLimits[0];
            for(int i = 1; i < sizeAndLimits.length; ++i) {
                int limit = sizeAndLimits[i];
                for(double initCapacityFactor : initialCapacityFactors) {
                    for(float loadFactor : loadFactors) {
                        runTest(limit, size, initCapacityFactor, loadFactor);
                    }
                }
            }

        }

        Collections.sort(results);

        for(final Result result : results) {
            result.printSummary();
        }

//      ResultVisualizer.visualizeResults(results);

    }

    private static void runTest(final int hashLimit, final int sampleSize,
            final double initCapacityFactor, final float loadFactor) {

        final int initialCapacity = (int)(sampleSize * initCapacityFactor);

        System.out.println("Running test for a sample collection of size " + sampleSize 
            + ", an initial capacity of " + initialCapacity + ", a load factor of "
            + loadFactor + " and keys with a hash code limited to " + hashLimit);
        System.out.println("====================");

        double hashOverload = (((double)sampleSize/hashLimit) - 1.0) * 100.0;

        System.out.println("Hash code overload: " + hashOverload + "%");

        //Generating our sample key collection.
        final List<Key> keys = generateSamples(hashLimit, sampleSize);

        //Generating our value collection
        final List<Object> values = generateValues(sampleSize);

        final HashMap<Key, Object> map = new HashMap<Key, Object>(initialCapacity, loadFactor);

        final long startPut = System.nanoTime();

        for(int i = 0; i < sampleSize; ++i) {
            map.put(keys.get(i), values.get(i));
        }

        final long endPut = System.nanoTime();

        final long putTime = endPut - startPut;
        final long averagePutTime = putTime/(sampleSize/10);

        System.out.println("Time to map all keys to their values: " + putTime + " ns");
        System.out.println("Average put time per 10 entries: " + averagePutTime + " ns");

        final long startGet = System.nanoTime();

        for(int i = 0; i < sampleSize; ++i) {
            map.get(keys.get(i));
        }

        final long endGet = System.nanoTime();

        final long getTime = endGet - startGet;
        final long averageGetTime = getTime/(sampleSize/10);

        System.out.println("Time to get the value for every key: " + getTime + " ns");
        System.out.println("Average get time per 10 entries: " + averageGetTime + " ns");

        System.out.println("");

        final Result result = 
            new Result(sampleSize, initialCapacity, loadFactor, hashOverload, averagePutTime, averageGetTime, hashLimit);

        results.add(result);

        //Haha, what kind of noob explicitly calls for garbage collection?
        System.gc();

        try {
            Thread.sleep(200);
        } catch(final InterruptedException e) {}

    }

    private static List<Key> generateSamples(final int hashLimit, final int sampleSize) {

        final ArrayList<Key> result = new ArrayList<Key>(sampleSize);

        for(int i = 0; i < sampleSize; ++i) {
            result.add(new Key(i, hashLimit));
        }

        return result;

    }

    private static List<Object> generateValues(final int sampleSize) {

        final ArrayList<Object> result = new ArrayList<Object>(sampleSize);

        for(int i = 0; i < sampleSize; ++i) {
            result.add(new Object());
        }

        return result;

    }

    private static class Key {

        private final int hashCode;
        private final int id;

        Key(final int id, final int hashLimit) {

            //Equals implies same hashCode if limit is the same
            //Same hashCode doesn't necessarily implies equals

            this.id = id;
            this.hashCode = id % hashLimit;

        }

        @Override
        public int hashCode() {
            return hashCode;
        }

        @Override
        public boolean equals(final Object o) {
            return ((Key)o).id == this.id;
        }

    }

    static class Result implements Comparable<Result> {

        final int sampleSize;
        final int initialCapacity;
        final float loadFactor;
        final double hashOverloadPercentage;
        final long averagePutTime;
        final long averageGetTime;
        final int hashLimit;

        Result(final int sampleSize, final int initialCapacity, final float loadFactor, 
                final double hashOverloadPercentage, final long averagePutTime, 
                final long averageGetTime, final int hashLimit) {

            this.sampleSize = sampleSize;
            this.initialCapacity = initialCapacity;
            this.loadFactor = loadFactor;
            this.hashOverloadPercentage = hashOverloadPercentage;
            this.averagePutTime = averagePutTime;
            this.averageGetTime = averageGetTime;
            this.hashLimit = hashLimit;

        }

        @Override
        public int compareTo(final Result o) {

            final long putDiff = o.averagePutTime - this.averagePutTime;
            final long getDiff = o.averageGetTime - this.averageGetTime;

            return (int)(putDiff + getDiff);
        }

        void printSummary() {

            System.out.println("" + averagePutTime + " ns per 10 puts, "
                + averageGetTime + " ns per 10 gets, for a load factor of "
                + loadFactor + ", initial capacity of " + initialCapacity
                + " for " + sampleSize + " mappings and " + hashOverloadPercentage 
                + "% hash code overload.");

        }

    }

}
package hashmaptest;

import hashmaptest.HashMapTest.Result;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import javax.imageio.ImageIO;

public class ResultVisualizer {

    private static final Map<Integer, Map<Integer, Set<Result>>> sampleSizeToHashLimit = 
        new HashMap<Integer, Map<Integer, Set<Result>>>();

    private static final DecimalFormat df = new DecimalFormat("0.00");

    static void visualizeResults(final List<Result> results) throws IOException {

        final File tempFolder = new File("C:\\temp");
        final File baseFolder = makeFolder(tempFolder, "hashmap_tests");

        long bestPutTime = -1L;
        long worstPutTime = 0L;
        long bestGetTime = -1L;
        long worstGetTime = 0L;

        for(final Result result : results) {

            final Integer sampleSize = result.sampleSize;
            final Integer hashLimit = result.hashLimit;
            final long putTime = result.averagePutTime;
            final long getTime = result.averageGetTime;

            if(bestPutTime == -1L || putTime < bestPutTime)
                bestPutTime = putTime;
            if(bestGetTime <= -1.0f || getTime < bestGetTime)
                bestGetTime = getTime;

            if(putTime > worstPutTime)
                worstPutTime = putTime;
            if(getTime > worstGetTime)
                worstGetTime = getTime;

            Map<Integer, Set<Result>> hashLimitToResults = 
                sampleSizeToHashLimit.get(sampleSize);
            if(hashLimitToResults == null) {
                hashLimitToResults = new HashMap<Integer, Set<Result>>();
                sampleSizeToHashLimit.put(sampleSize, hashLimitToResults);
            }
            Set<Result> resultSet = hashLimitToResults.get(hashLimit);
            if(resultSet == null) {
                resultSet = new HashSet<Result>();
                hashLimitToResults.put(hashLimit, resultSet);
            }
            resultSet.add(result);

        }

        System.out.println("Best average put time: " + bestPutTime + " ns");
        System.out.println("Best average get time: " + bestGetTime + " ns");
        System.out.println("Worst average put time: " + worstPutTime + " ns");
        System.out.println("Worst average get time: " + worstGetTime + " ns");

        for(final Integer sampleSize : sampleSizeToHashLimit.keySet()) {

            final File sizeFolder = makeFolder(baseFolder, "sample_size_" + sampleSize);

            final Map<Integer, Set<Result>> hashLimitToResults = 
                sampleSizeToHashLimit.get(sampleSize);

            for(final Integer hashLimit : hashLimitToResults.keySet()) {

                final File limitFolder = makeFolder(sizeFolder, "hash_limit_" + hashLimit);

                final Set<Result> resultSet = hashLimitToResults.get(hashLimit);

                final Set<Float> loadFactorSet = new HashSet<Float>();
                final Set<Integer> initialCapacitySet = new HashSet<Integer>();

                for(final Result result : resultSet) {
                    loadFactorSet.add(result.loadFactor);
                    initialCapacitySet.add(result.initialCapacity);
                }

                final List<Float> loadFactors = new ArrayList<Float>(loadFactorSet);
                final List<Integer> initialCapacities = new ArrayList<Integer>(initialCapacitySet);

                Collections.sort(loadFactors);
                Collections.sort(initialCapacities);

                final BufferedImage putImage = 
                    renderMap(resultSet, loadFactors, initialCapacities, worstPutTime, bestPutTime, false);
                final BufferedImage getImage = 
                    renderMap(resultSet, loadFactors, initialCapacities, worstGetTime, bestGetTime, true);

                final String putFileName = "size_" + sampleSize + "_hlimit_" + hashLimit + "_puts.png";
                final String getFileName = "size_" + sampleSize + "_hlimit_" + hashLimit + "_gets.png";

                writeImage(putImage, limitFolder, putFileName);
                writeImage(getImage, limitFolder, getFileName);

            }

        }

    }

    private static File makeFolder(final File parent, final String folder) throws IOException {

        final File child = new File(parent, folder);

        if(!child.exists())
            child.mkdir();

        return child;

    }

    private static BufferedImage renderMap(final Set<Result> results, final List<Float> loadFactors,
            final List<Integer> initialCapacities, final float worst, final float best,
            final boolean get) {

        //[x][y] => x is mapped to initial capacity, y is mapped to load factor
        final Color[][] map = new Color[initialCapacities.size()][loadFactors.size()];

        for(final Result result : results) {
            final int x = initialCapacities.indexOf(result.initialCapacity);
            final int y = loadFactors.indexOf(result.loadFactor);
            final float time = get ? result.averageGetTime : result.averagePutTime;
            final float score = (time - best)/(worst - best);
            final Color c = new Color(score, 1.0f - score, 0.0f);
            map[x][y] = c;
        }

        final int imageWidth = initialCapacities.size() * 40 + 50;
        final int imageHeight = loadFactors.size() * 40 + 50;

        final BufferedImage image = 
            new BufferedImage(imageWidth, imageHeight, BufferedImage.TYPE_3BYTE_BGR);

        final Graphics2D g = image.createGraphics();

        g.setColor(Color.WHITE);
        g.fillRect(0, 0, imageWidth, imageHeight);

        for(int x = 0; x < map.length; ++x) {

            for(int y = 0; y < map[x].length; ++y) {

                g.setColor(map[x][y]);
                g.fillRect(50 + x*40, imageHeight - 50 - (y+1)*40, 40, 40);

                g.setColor(Color.BLACK);
                g.drawLine(25, imageHeight - 50 - (y+1)*40, 50, imageHeight - 50 - (y+1)*40);

                final Float loadFactor = loadFactors.get(y);
                g.drawString(df.format(loadFactor), 10, imageHeight - 65 - (y)*40);

            }

            g.setColor(Color.BLACK);
            g.drawLine(50 + (x+1)*40, imageHeight - 50, 50 + (x+1)*40, imageHeight - 15);

            final int initialCapacity = initialCapacities.get(x);
            g.drawString(((initialCapacity%1000 == 0) ? "" + (initialCapacity/1000) + "K" : "" + initialCapacity), 15 + (x+1)*40, imageHeight - 25);
        }

        g.drawLine(25, imageHeight - 50, imageWidth, imageHeight - 50);
        g.drawLine(50, 0, 50, imageHeight - 25);

        g.dispose();

        return image;

    }

    private static void writeImage(final BufferedImage image, final File folder, 
            final String filename) throws IOException {

        final File imageFile = new File(folder, filename);

        ImageIO.write(image, "png", imageFile);

    }

}
/**
 * Constructs an empty <tt>HashMap</tt> with the specified initial
 * capacity and load factor.
 *
 * @param  initialCapacity the initial capacity
 * @param  loadFactor      the load factor
 * @throws IllegalArgumentException if the initial capacity is negative
 *         or the load factor is nonpositive
 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);

    // Find a power of 2 >= initialCapacity
    int capacity = 1;
    while (capacity < initialCapacity)
        capacity <<= 1;

    this.loadFactor = loadFactor;
    threshold = (int)(capacity * loadFactor);
    table = new Entry[capacity];
    init();
}
Maps.newHashMapWithExpectedSize(expectedSize)
capacity = expectedSize / 0.75F + 1.0F