Warning: file_get_contents(/data/phpspider/zhask/data//catemap/4/json/15.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
如何对JSON对象进行排序?_Json_Xml_Sorting_Xml Parsing_Rss - Fatal编程技术网

如何对JSON对象进行排序?

如何对JSON对象进行排序?,json,xml,sorting,xml-parsing,rss,Json,Xml,Sorting,Xml Parsing,Rss,我已经找了一段时间了。我希望按照以下方式对JSON文件进行排序: { "rss": { "-version": "2.0", "channel": { "title": "pubmed: wonpil im", "link": "https://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Search&db=PubMed&term=wonpil%20im", "description":

我已经找了一段时间了。我希望按照以下方式对JSON文件进行排序:

  {
  "rss": {
    "-version": "2.0",
    "channel": {
      "title": "pubmed: wonpil im",
      "link": "https://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Search&db=PubMed&term=wonpil%20im",
      "description": "NCBI: db=pubmed; Term=wonpil im",
      "language": "en-us",
      "docs": "http://blogs.law.harvard.edu/tech/rss",
      "ttl": "1440",
      "image": {
        "title": "NCBI pubmed",
        "url": "https://www.ncbi.nlm.nih.gov/entrez/query/static/gifs/iconsml.gif",
        "link": "https://www.ncbi.nlm.nih.gov/sites/entrez",
        "description": "PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites."
      },
      "item": [
        {
          "title": "Modeling and simulation of bacterial outer membranes and interactions with membrane proteins.",
          "link": "https://www.ncbi.nlm.nih.gov/pubmed/28157627?dopt=Abstract",
          "description": "
  <table border=\"0\" width=\"100%\"><tr><td align=\"left\"><a href=\"https://linkinghub.elsevier.com/retrieve/pii/S0959-440X(17)30003-9\"><img src=\"//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif\" border=\"0\"/></a> </td><td align=\"right\"><a href=\"https://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&amp;cmd=Link&amp;LinkName=pubmed_pubmed&amp;from_uid=28157627\">Related Articles</a></td></tr></table>
        <p><b>Modeling and simulation of bacterial outer membranes and interactions with membrane proteins.</b></p>          
        <p>Curr Opin Struct Biol. 2017 Jan 31;43:131-140</p>
        <p>Authors:  Patel DS, Qi Y, Im W</p>
        <p>Abstract<br/>
        The outer membrane (OM) of Gram-negative bacteria is composed of phospholipids in the periplasmic leaflet and lipopolysaccharides (LPS) in the external leaflet, along with β-barrel OM proteins (OMPs) and lipidated periplasmic lipoproteins. As a defensive barrier to toxic compounds, an LPS molecule has high antigenic diversity and unique combination of OM-anchored lipid A with core oligosaccharides and O-antigen polysaccharides, creating dynamic protein-LPS and LPS-LPS interactions. Here, we review recent efforts on modeling and simulation of native-like bacterial OMs to explore structures, dynamics, and interactions of different OM components and their roles in transportation of ions, substrates, and antibiotics across the OM and accessibility of monoclonal antibodies (mAbs) to surface epitopes. Simulation studies attempting to provide insight into the structural basis for LPS transport and OMP insertion in the bacterial OM are also highlighted.<br/>
        </p><p>PMID: 28157627 [PubMed - as supplied by publisher]</p>
    ",
          "author": " Patel DS, Qi Y, Im W",
          "category": "Curr Opin Struct Biol",
          "guid": {
            "-isPermaLink": "false",
            "#text": "PubMed:28157627"
          }
        },
        {
          "title": "Refinement of OprH-LPS Interactions by Molecular Simulations.",
          "link": "https://www.ncbi.nlm.nih.gov/pubmed/28122220?dopt=Abstract",
          "description": "
  <table border=\"0\" width=\"100%\"><tr><td align=\"left\"><a href=\"https://linkinghub.elsevier.com/retrieve/pii/S0006-3495(16)34281-3\"><img src=\"//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif\" border=\"0\"/></a> </td><td align=\"right\"><a href=\"https://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&amp;cmd=Link&amp;LinkName=pubmed_pubmed&amp;from_uid=28122220\">Related Articles</a></td></tr></table>
        <p><b>Refinement of OprH-LPS Interactions by Molecular Simulations.</b></p>          
        <p>Biophys J. 2017 Jan 24;112(2):346-355</p>
        <p>Authors:  Lee J, Patel DS, Kucharska I, Tamm LK, Im W</p>
        <p>Abstract<br/>
        The outer membrane (OM) of Gram-negative bacteria is composed of lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. The outer membrane protein H (OprH) of Pseudomonas aeruginosa provides an increased stability to the OMs by directly interacting with LPS. Here we report the influence of various P. aeruginosa and, for comparison, Escherichia coli LPS environments on the physical properties of the OMs and OprH using all-atom molecular dynamics simulations. The simulations reveal that although the P. aeruginosa OMs are thinner hydrophobic bilayers than the E. coli OMs, which is expected from the difference in the acyl chain length of their lipid A, this effect is almost imperceptible around OprH due to a dynamically adjusted hydrophobic match between OprH and the OM. The structure and dynamics of the extracellular loops of OprH show distinct behaviors in different LPS environments. Including the O-antigen greatly reduces the flexibility of the OprH loops and increases the interactions between these loops and LPS. Furthermore, our study shows that the interactions between OprH and LPS mainly depend on the secondary structure of OprH and the chemical structure of LPS, resulting in distinctive patterns in different LPS environments.<br/>
        </p><p>PMID: 28122220 [PubMed - in process]</p>
    ",
          "author": " Lee J, Patel DS, Kucharska I, Tamm LK, Im W",
          "category": "Biophys J",
          "guid": {
            "-isPermaLink": "false",
            "#text": "PubMed:28122220"
          }
        },
        {
          "title": "CHARMM-GUI MDFF/xMDFF Utilizer for Molecular Dynamics Flexible Fitting Simulations in Various Environments.",
          "link": "https://www.ncbi.nlm.nih.gov/pubmed/27936734?dopt=Abstract",
          "description": "
  <table border=\"0\" width=\"100%\"><tr><td align=\"left\"><a href=\"https://dx.doi.org/10.1021/acs.jpcb.6b10568\"><img src=\"//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg\" border=\"0\"/></a> </td><td align=\"right\"><a href=\"https://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&amp;cmd=Link&amp;LinkName=pubmed_pubmed&amp;from_uid=27936734\">Related Articles</a></td></tr></table>
        <p><b>CHARMM-GUI MDFF/xMDFF Utilizer for Molecular Dynamics Flexible Fitting Simulations in Various Environments.</b></p>          
        <p>J Phys Chem B. 2016 Dec 23;:</p>
        <p>Authors:  Qi Y, Lee J, Singharoy A, McGreevy R, Schulten K, Im W</p>
        <p>Abstract<br/>
        X-ray crystallography and cryo-electron microscopy are two popular methods for the structure determination of biological molecules. Atomic structures are derived through the fitting and refinement of an initial model into electron density maps constructed by both experiments. Two computational approaches, MDFF and xMDFF, have been developed to facilitate this process by integrating the experimental data with molecular dynamics simulation. However, the setup of an MDFF/xMDFF simulation requires knowledge of both experimental and computational methods, which is not straightforward for nonexpert users. In addition, sometimes it is desirable to include realistic environments, such as explicit solvent and lipid bilayers during the simulation, which poses another challenge even for expert users. To alleviate these difficulties, we have developed MDFF/xMDFF Utilizer in CHARMM-GUI that helps users to set up an MDFF/xMDFF simulation. The capability of MDFF/xMDFF Utilizer is greatly enhanced by integration with other CHARMM-GUI modules, including protein structure manipulation, a diverse set of lipid types, and all-atom CHARMM and coarse-grained PACE force fields. With this integration, various simulation environments are available for MDFF Utilizer (vacuum, implicit/explicit solvent, and bilayers) and xMDFF Utilizer (vacuum and solution). In this work, three examples are shown to demonstrate the usage of MDFF/xMDFF Utilizer.<br/>
        </p><p>PMID: 27936734 [PubMed - as supplied by publisher]</p>
    ",
          "author": " Qi Y, Lee J, Singharoy A, McGreevy R, Schulten K, Im W",
          "category": "J Phys Chem B",
          "guid": {
            "-isPermaLink": "false",
            "#text": "PubMed:27936734"
          }
        },
      ]
    }
  }
}
 {
      "rss": {
        "-version": "2.0",
        "channel": {
          "title": "pubmed: wonpil im",
          "link": "https://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Search&db=PubMed&term=wonpil%20im",
          "description": "NCBI: db=pubmed; Term=wonpil im",
          "language": "en-us",
          "docs": "http://blogs.law.harvard.edu/tech/rss",
          "ttl": "1440",
          "image": {
            "title": "NCBI pubmed",
            "url": "https://www.ncbi.nlm.nih.gov/entrez/query/static/gifs/iconsml.gif",
            "link": "https://www.ncbi.nlm.nih.gov/sites/entrez",
            "description": "PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites."
          },
          "item": [


            {
              "title": "CHARMM-GUI MDFF/xMDFF Utilizer for Molecular Dynamics Flexible Fitting Simulations in Various Environments.",
              "link": "https://www.ncbi.nlm.nih.gov/pubmed/27936734?dopt=Abstract",
              "description": "
      <table border=\"0\" width=\"100%\"><tr><td align=\"left\"><a href=\"https://dx.doi.org/10.1021/acs.jpcb.6b10568\"><img src=\"//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg\" border=\"0\"/></a> </td><td align=\"right\"><a href=\"https://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&amp;cmd=Link&amp;LinkName=pubmed_pubmed&amp;from_uid=27936734\">Related Articles</a></td></tr></table>
            <p><b>CHARMM-GUI MDFF/xMDFF Utilizer for Molecular Dynamics Flexible Fitting Simulations in Various Environments.</b></p>          
            <p>J Phys Chem B. 2016 Dec 23;:</p>
            <p>Authors:  Qi Y, Lee J, Singharoy A, McGreevy R, Schulten K, Im W</p>
            <p>Abstract<br/>
            X-ray crystallography and cryo-electron microscopy are two popular methods for the structure determination of biological molecules. Atomic structures are derived through the fitting and refinement of an initial model into electron density maps constructed by both experiments. Two computational approaches, MDFF and xMDFF, have been developed to facilitate this process by integrating the experimental data with molecular dynamics simulation. However, the setup of an MDFF/xMDFF simulation requires knowledge of both experimental and computational methods, which is not straightforward for nonexpert users. In addition, sometimes it is desirable to include realistic environments, such as explicit solvent and lipid bilayers during the simulation, which poses another challenge even for expert users. To alleviate these difficulties, we have developed MDFF/xMDFF Utilizer in CHARMM-GUI that helps users to set up an MDFF/xMDFF simulation. The capability of MDFF/xMDFF Utilizer is greatly enhanced by integration with other CHARMM-GUI modules, including protein structure manipulation, a diverse set of lipid types, and all-atom CHARMM and coarse-grained PACE force fields. With this integration, various simulation environments are available for MDFF Utilizer (vacuum, implicit/explicit solvent, and bilayers) and xMDFF Utilizer (vacuum and solution). In this work, three examples are shown to demonstrate the usage of MDFF/xMDFF Utilizer.<br/>
            </p><p>PMID: 27936734 [PubMed - as supplied by publisher]</p>
        ",
              "author": " Qi Y, Lee J, Singharoy A, McGreevy R, Schulten K, Im W",
              "category": "J Phys Chem B",
              "guid": {
                "-isPermaLink": "false",
                "#text": "PubMed:27936734"
              }
            },




            {
              "title": "Modeling and simulation of bacterial outer membranes and interactions with membrane proteins.",
              "link": "https://www.ncbi.nlm.nih.gov/pubmed/28157627?dopt=Abstract",
              "description": "
      <table border=\"0\" width=\"100%\"><tr><td align=\"left\"><a href=\"https://linkinghub.elsevier.com/retrieve/pii/S0959-440X(17)30003-9\"><img src=\"//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif\" border=\"0\"/></a> </td><td align=\"right\"><a href=\"https://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&amp;cmd=Link&amp;LinkName=pubmed_pubmed&amp;from_uid=28157627\">Related Articles</a></td></tr></table>
            <p><b>Modeling and simulation of bacterial outer membranes and interactions with membrane proteins.</b></p>          
            <p>Curr Opin Struct Biol. 2017 Jan 31;43:131-140</p>
            <p>Authors:  Patel DS, Qi Y, Im W</p>
            <p>Abstract<br/>
            The outer membrane (OM) of Gram-negative bacteria is composed of phospholipids in the periplasmic leaflet and lipopolysaccharides (LPS) in the external leaflet, along with β-barrel OM proteins (OMPs) and lipidated periplasmic lipoproteins. As a defensive barrier to toxic compounds, an LPS molecule has high antigenic diversity and unique combination of OM-anchored lipid A with core oligosaccharides and O-antigen polysaccharides, creating dynamic protein-LPS and LPS-LPS interactions. Here, we review recent efforts on modeling and simulation of native-like bacterial OMs to explore structures, dynamics, and interactions of different OM components and their roles in transportation of ions, substrates, and antibiotics across the OM and accessibility of monoclonal antibodies (mAbs) to surface epitopes. Simulation studies attempting to provide insight into the structural basis for LPS transport and OMP insertion in the bacterial OM are also highlighted.<br/>
            </p><p>PMID: 28157627 [PubMed - as supplied by publisher]</p>
        ",
              "author": " Patel DS, Qi Y, Im W",
              "category": "Curr Opin Struct Biol",
              "guid": {
                "-isPermaLink": "false",
                "#text": "PubMed:28157627"
              }
            },
            {
              "title": "Refinement of OprH-LPS Interactions by Molecular Simulations.",
              "link": "https://www.ncbi.nlm.nih.gov/pubmed/28122220?dopt=Abstract",
              "description": "
      <table border=\"0\" width=\"100%\"><tr><td align=\"left\"><a href=\"https://linkinghub.elsevier.com/retrieve/pii/S0006-3495(16)34281-3\"><img src=\"//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif\" border=\"0\"/></a> </td><td align=\"right\"><a href=\"https://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&amp;cmd=Link&amp;LinkName=pubmed_pubmed&amp;from_uid=28122220\">Related Articles</a></td></tr></table>
            <p><b>Refinement of OprH-LPS Interactions by Molecular Simulations.</b></p>          
            <p>Biophys J. 2017 Jan 24;112(2):346-355</p>
            <p>Authors:  Lee J, Patel DS, Kucharska I, Tamm LK, Im W</p>
            <p>Abstract<br/>
            The outer membrane (OM) of Gram-negative bacteria is composed of lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. The outer membrane protein H (OprH) of Pseudomonas aeruginosa provides an increased stability to the OMs by directly interacting with LPS. Here we report the influence of various P. aeruginosa and, for comparison, Escherichia coli LPS environments on the physical properties of the OMs and OprH using all-atom molecular dynamics simulations. The simulations reveal that although the P. aeruginosa OMs are thinner hydrophobic bilayers than the E. coli OMs, which is expected from the difference in the acyl chain length of their lipid A, this effect is almost imperceptible around OprH due to a dynamically adjusted hydrophobic match between OprH and the OM. The structure and dynamics of the extracellular loops of OprH show distinct behaviors in different LPS environments. Including the O-antigen greatly reduces the flexibility of the OprH loops and increases the interactions between these loops and LPS. Furthermore, our study shows that the interactions between OprH and LPS mainly depend on the secondary structure of OprH and the chemical structure of LPS, resulting in distinctive patterns in different LPS environments.<br/>
            </p><p>PMID: 28122220 [PubMed - in process]</p>
        ",
              "author": " Lee J, Patel DS, Kucharska I, Tamm LK, Im W",
              "category": "Biophys J",
              "guid": {
                "-isPermaLink": "false",
                "#text": "PubMed:28122220"
              }
            },

          ]
        }
      }
    }
{
“rss”:{
“-版本”:“2.0”,
“频道”:{
“标题”:“pubmed:wonpil im”,
“链接”:https://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Search&db=PubMed&term=wonpil%20im",
“描述”:“NCBI:db=pubmed;Term=wonpil im”,
“语言”:“en us”,
“文档”:http://blogs.law.harvard.edu/tech/rss",
“ttl”:“1440”,
“图像”:{
“标题”:“NCBI pubmed”,
“url”:”https://www.ncbi.nlm.nih.gov/entrez/query/static/gifs/iconsml.gif",
“链接”:https://www.ncbi.nlm.nih.gov/sites/entrez",
“描述”:“PubMed包含来自MEDLINE、生命科学期刊和在线书籍的数百万篇生物医学文献引文。引文可能包括指向PubMed Central和出版商网站全文内容的链接。”
},
“项目”:[
{
“标题”:“细菌外膜及与膜蛋白相互作用的建模和模拟”,
“链接”:https://www.ncbi.nlm.nih.gov/pubmed/28157627?dopt=Abstract",
“说明”:
细菌外膜的建模和模拟以及与膜蛋白的相互作用。

Curr Opin Struct Biol.2017年1月31日;43:131-140

作者:Patel DS,Qi Y,Im W

摘要
革兰氏阴性菌的外膜(OM)由周质小叶中的磷脂和外小叶中的脂多糖(LPS)以及β-桶OM蛋白(OMP)组成作为有毒化合物的防御屏障,LPS分子具有高度的抗原多样性和OM锚定脂质a与核心低聚糖和O-抗原多糖的独特组合,形成动态蛋白质LPS和LPS-LPS相互作用。在这里,我们回顾了近年来在建模和模拟天然类细菌OMs,探索不同OM成分的结构、动力学和相互作用,以及它们在离子、底物和抗生素跨OM运输中的作用,以及单克隆抗体(MAB)的可及性表面抗原表位。模拟研究试图深入了解细菌OM中LPS转运和OMP插入的结构基础。

PMID:28157627[公共医学-由出版商提供]

", “作者”:“Patel DS,Qi Y,Im W”, “类别”:“当前操作结构生物”, “guid”:{ “-isPermaLink”:“false”, #文本:“PubMed:28157627” } }, { “标题”:“通过分子模拟完善OprH-LPS相互作用。”, “链接”:https://www.ncbi.nlm.nih.gov/pubmed/28122220?dopt=Abstract", “说明”: 通过分子模拟完善OprH-LPS相互作用。

Biophys J.2017年1月24日;112(2):346-355

作者:Lee J,Patel DS,Kucharska I,Tamm LK,Im W

摘要
革兰氏阴性菌的外膜(OM)由外叶的脂多糖(LPS)和内叶的磷脂组成。外膜蛋白H(OprH)通过直接与LPS相互作用,铜绿假单胞菌对OMs的稳定性增强。在此,我们报告了各种铜绿假单胞菌和大肠杆菌LPS环境对OMs和OprH物理性质的影响,以供比较。模拟结果表明,尽管铜绿假单胞菌OMs是比大肠杆菌OMs更薄的疏水双层,这是由于它们的脂质A的酰基链长度的差异所预期的,由于OprH和OM之间动态调节的疏水匹配,这种效应在OprH周围几乎是不可察觉的。OprH细胞外环的结构和动力学表现出明显的差异在不同LPS环境中的行为。包括O-抗原大大降低了OprH环的灵活性,并增加了这些环与LPS之间的相互作用。此外,我们的研究表明,OprH与LPS之间的相互作用主要取决于OprH的二级结构和LPS的化学结构,导致不同LPS环境中的增量模式。

PMID:28122220[公共医疗-在建]

", “作者”:“Lee J,Patel DS,Kucharska I,Tamm LK,Im W”, “类别”:“Biophys J”, “guid”:{ “-isPermaLink”:“false”, #文本:“PubMed:28122220” } }, { “标题”:“CHARMM-GUI MDFF/xMDFF实用程序,用于各种环境中的分子动力学柔性拟合模拟。”, “链接”:https://www.ncbi.nlm.nih.gov/pubmed/27936734?dopt=Abstract", “说明”: CHARMM-GUI MDFF/xMDFF实用程序,用于各种环境中的分子动力学柔性拟合模拟。

J Phys Chem B.2016年12月23日;:

作者:齐Y,李J,辛哈罗伊A,麦格雷维R,舒尔滕K,Im W

摘要
X射线结晶学和低温电子显微镜是生物分子结构测定的两种常用方法。原子结构是通过将初始模型拟合和细化到由这两种实验构建的电子密度图中而得出的。两种计算方法MDFF和xMDFF已发展到faci通过将实验数据与分子动力学模拟相结合来说明这一过程。然而,MDFF/xMDFF模拟的建立需要实验和计算方法的知识,这对于非专家用户来说并不简单。此外,有时还需要包括真实环境,例如显式环境模拟过程中的溶剂和脂质双层