Warning: file_get_contents(/data/phpspider/zhask/data//catemap/2/python/331.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
Python 线宽=2) ax.添加补丁(补丁) ax.set_xlim(-1,11) ax.set_ylim(-1,9) fig.savefig('foo.pdf')_Python_Pdf Generation_Vector Graphics_Bezier_Polygons - Fatal编程技术网

Python 线宽=2) ax.添加补丁(补丁) ax.set_xlim(-1,11) ax.set_ylim(-1,9) fig.savefig('foo.pdf')

Python 线宽=2) ax.添加补丁(补丁) ax.set_xlim(-1,11) ax.set_ylim(-1,9) fig.savefig('foo.pdf'),python,pdf-generation,vector-graphics,bezier,polygons,Python,Pdf Generation,Vector Graphics,Bezier,Polygons,谢谢你的回答!当然,计算圆弧坐标和线段坐标并不困难;也就是说,我可以很容易地使用单独的圆弧和线段绘制形状的轮廓。但是,如何获得填充平面图形?我可以使用Cairo库从圆弧和线段组成闭合路径,然后告诉库填充路径的内部吗?谢谢,这太棒了!我接受了另一个答案,因为Cairo似乎是完成这类任务的“正确”工具,但看到人们也能在matplotlib中完成这项任务,我感到非常高兴。特别是,从路径片段构造复合路径的代码片段非常有用。 #!/usr/bin/env python import numpy as n

谢谢你的回答!当然,计算圆弧坐标和线段坐标并不困难;也就是说,我可以很容易地使用单独的圆弧和线段绘制形状的轮廓。但是,如何获得填充平面图形?我可以使用Cairo库从圆弧和线段组成闭合路径,然后告诉库填充路径的内部吗?谢谢,这太棒了!我接受了另一个答案,因为Cairo似乎是完成这类任务的“正确”工具,但看到人们也能在matplotlib中完成这项任务,我感到非常高兴。特别是,从路径片段构造复合路径的代码片段非常有用。
#!/usr/bin/env python

import numpy as np
from matplotlib.path import Path
from matplotlib.patches import PathPatch, Polygon
from matplotlib.transforms import Bbox, BboxTransformTo

def side(a, b, c):
    "On which side of line a-b is point c? Returns -1, 0, or 1."
    return np.sign(np.linalg.det(np.c_[[a,b,c],[1,1,1]]))

def center((prev, curr, next), radius):
    "Find center of arc approximating corner at curr."
    p0, p1 = prev
    c0, c1 = curr
    n0, n1 = next
    dp = radius * np.hypot(c1 - p1, c0 - p0)
    dn = radius * np.hypot(c1 - n1, c0 - n0)
    p = p1 * c0 - p0 * c1
    n = n1 * c0 - n0 * c1
    results = \
        np.linalg.solve([[p1 - c1, c0 - p0],
                         [n1 - c1, c0 - n0]],
                        [[p - dp, p - dp, p + dp, p + dp],
                         [n - dn, n + dn, n - dn, n + dn]])
    side_n = side(prev, curr, next)
    side_p = side(next, curr, prev)
    for r in results.T:
        if (side(prev, curr, r), side(next, curr, r)) == (side_n, side_p):
            return r
    raise ValueError, "Cannot find solution"

def proj((prev, curr, next), center):
    "Project center onto lines prev-curr and next-curr."
    p0, p1 = prev = np.asarray(prev)
    c0, c1 = curr = np.asarray(curr)
    n0, n1 = next = np.asarray(next)
    pc = curr - prev
    nc = curr - next
    pc2 = np.dot(pc, pc)
    nc2 = np.dot(nc, nc)
    return (prev + np.dot(center - prev, pc)/pc2 * pc,
            next + np.dot(center - next, nc)/nc2 * nc)

def rad2deg(angle):
    return angle * 180.0 / np.pi

def angle(center, point):
    x, y = np.asarray(point) - np.asarray(center)
    return np.arctan2(y, x)

def arc_path(center, start, end):
    "Return a Path for an arc from start to end around center."
    # matplotlib arcs always go ccw so we may need to mirror
    mirror = side(center, start, end) < 0
    if mirror: 
        start *= [1, -1]
        center *= [1, -1]
        end *= [1, -1]
    return Path.arc(rad2deg(angle(center, start)),
                    rad2deg(angle(center, end))), \
           mirror

def path(vertices, radii):
    "Return a Path for a closed rounded polygon."
    if np.isscalar(radii):
        radii = np.repeat(radii, len(vertices))
    else:
        radii = np.asarray(radii)
    pv = []
    pc = []
    first = True
    for i in range(len(vertices)):
        if i == 0:
            seg = (vertices[-1], vertices[0], vertices[1])
        elif i == len(vertices) - 1:
            seg = (vertices[-2], vertices[-1], vertices[0])
        else:
            seg = vertices[i-1:i+2]
        r = radii[i]
        c = center(seg, r)
        a, b = proj(seg, c)
        arc, mirror = arc_path(c, a, b)
        m = [1,1] if not mirror else [1,-1]
        bb = Bbox([c, c + (r, r)])
        iter = arc.iter_segments(BboxTransformTo(bb))
        for v, c in iter:
            if c == Path.CURVE4:
                pv.extend([m * v[0:2], m * v[2:4], m * v[4:6]])
                pc.extend([c, c, c])
            elif c == Path.MOVETO:
                pv.append(m * v)
                if first:
                    pc.append(Path.MOVETO)
                    first = False
                else:
                    pc.append(Path.LINETO)
    pv.append([0,0])
    pc.append(Path.CLOSEPOLY)

    return Path(pv, pc)

if __name__ == '__main__':
    from matplotlib import pyplot
    fig = pyplot.figure()
    ax = fig.add_subplot(111)
    vertices = [[3,0], [5,2], [10,0], [6,9], [6,5], [3, 5], [0,2]]

    patch = Polygon(vertices, edgecolor='red', facecolor='None',
                    linewidth=1)
    ax.add_patch(patch)

    patch = PathPatch(path(vertices, 0.5), 
                      edgecolor='black', facecolor='blue', alpha=0.4,
                      linewidth=2)
    ax.add_patch(patch)

    ax.set_xlim(-1, 11)
    ax.set_ylim(-1, 9)
    fig.savefig('foo.pdf')