Warning: file_get_contents(/data/phpspider/zhask/data//catemap/1/cassandra/3.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
试图用Python编写自己的神经网络_Python_Machine Learning_Neural Network - Fatal编程技术网

试图用Python编写自己的神经网络

试图用Python编写自己的神经网络,python,machine-learning,neural-network,Python,Machine Learning,Neural Network,上学期我在斯坦福德上了一门在线机器学习课程,由吴教授讲授。我认为这是非常有益的。为了更好地复习/理解神经网络,我试着用python编写自己的。这是: import numpy class NN: def __init__(self, sl): #sl = number of units (not counting bias unit) in layer l self.sl = sl self.layers = len(sl)

上学期我在斯坦福德上了一门在线机器学习课程,由吴教授讲授。我认为这是非常有益的。为了更好地复习/理解神经网络,我试着用python编写自己的。这是:

import numpy

class NN:

    def __init__(self, sl):

        #sl = number of units (not counting bias unit) in layer l
        self.sl = sl
        self.layers = len(sl)

        #Create weights
        self.weights = []
        for idx in range(1, self.layers):
            self.weights.append(numpy.matrix(numpy.random.rand(self.sl[idx-1]+1, self.sl[idx])/5))

        self.cost = []

    def update(self, input):

        if input.shape[1] != self.sl[0]:
            raise ValueError, 'The first layer must have a node for every feature'

        self.z = []
        self.a = []

        #Input activations.  I'm expecting inputs as numpy matrix (Examples x Featrues) 
        self.a.append(numpy.hstack((numpy.ones((input.shape[0], 1)), input)))#Set inputs ai + bias unit

        #Hidden activations
        for weight in self.weights:         
            self.z.append(self.a[-1]*weight)
            self.a.append(numpy.hstack((numpy.ones((self.z[-1].shape[0], 1)), numpy.tanh(self.z[-1])))) #tanh is a fancy sigmoid

        #Output activation
        self.a[-1] = self.z[-1] #Not logistic regression thus no sigmoid function
        del self.z[-1]

    def backPropagate(self, targets, lamda):

        m = float(targets.shape[0]) #m is number of examples

        #Calculate cost
        Cost = -1/m*sum(numpy.power(self.a[-1] - targets, 2))
        for weight in self.weights:
            Cost = Cost + lamda/(2*m)*numpy.power(weight[1:, :], 2).sum()
        self.cost.append(abs(float(Cost)))

        #Calculate error for each layer
        delta = []
        delta.append(self.a[-1] - targets)
        for idx in range(1, self.layers-1): #No delta for the input layer because it is the input
            weight = self.weights[-idx][1:, :] #Ignore bias unit
            dsigmoid = numpy.multiply(self.a[-(idx+1)][:,1:], 1-self.a[-(idx+1)][:,1:]) #dsigmoid is a(l).*(1-a(l))
            delta.append(numpy.multiply(delta[-1]*weight.T, dsigmoid)) #Ignore Regularization

        Delta = []
        for idx in range(self.layers-1):
            Delta.append(self.a[idx].T*delta[-(idx+1)])

        self.weight_gradient = []
        for idx in range(len(Delta)):
            self.weight_gradient.append(numpy.nan_to_num(1/m*Delta[idx] + numpy.vstack((numpy.zeros((1, self.weights[idx].shape[1])), lamda/m*self.weights[idx][1:, :]))))

    def train(self, input, targets, alpha, lamda, iterations = 1000):

        #alpha: learning rate
        #lamda: regularization term

        for i in range(iterations):
            self.update(input)
            self.backPropagate(targets, lamda)
            self.weights = [self.weights[idx] - alpha*self.weight_gradient[idx] for idx in range(len(self.weights))]

    def predict(self, input):

        self.update(input)
        return self.a[-1]
但是它不起作用=(。检查成本与迭代我可以看到成本中的一点,对a的预测是一样的。有人能帮我理解为什么我的神经网络不收敛吗

谢谢, 很抱歉代码太多(也许有人会发现它很有用)

更新:

我没有使用随机数据,而是从UCI机器学习存储库中获得了一些结构化数据。特定的数据集是葡萄牙东北部地区森林火灾的燃烧区域,使用气象和其他数据:我修改了数据,使天数和月份都是数字:

为什么成本在4000左右见底,为什么数据与预测没有任何趋势?您可以在这里看到图表:

(对不起,我没有足够的代表添加评论,所以我将继续发布答案。)

是的,这看起来很奇怪。但是,如果在培训后生成一个新的矩阵B:

B = numpy.random.rand(5, 4)/5
Targets = B*X
print n.predict(B)
print B*X
它可以很好地工作(大多数时候-有时它仍然会给出平均值(目标值)作为答案)。 注意:在我的示例中,我从使用100个特性切换到仅使用4个特性

此外,我不认为在数据集中的50个元素上运行5000次迭代会对您有任何好处。您通常应该尽可能多地使用培训数据-在这里,您可以随心所欲地使用,但您使用的示例比您的功能更少


这很有趣,我会再考虑一下:)我用你的网络做了一个更简单的例子——作为输入,我提供了两个数字,并期望它们的总和作为输出。它或多或少工作正常。

由于一些原因,神经网络无法对森林火灾数据进行训练

首先,numpy.tanh()sigmoid函数的行为不符合预期。代码应更改为:

self.a.append(numpy.hstack((numpy.ones((self.z[-1].shape[0], 1)),numpy.tanh(self.z[-1])))) #tanh is a fancy sigmoid
matplotlib.pyplot.scatter(n.predict(nfeatures), targets)
致:

Second numpy和matplotlib玩得不好。numpy矩阵似乎是向后绘制的。这可以通过使用matrix.tolist()来解决。代码更改自:

self.a.append(numpy.hstack((numpy.ones((self.z[-1].shape[0], 1)),numpy.tanh(self.z[-1])))) #tanh is a fancy sigmoid
matplotlib.pyplot.scatter(n.predict(nfeatures), targets)
致:

最后,节点的数量应该大约是示例大小的10%。与其使用10个节点,不如使用50个节点

下面发布了工作神经网络代码,其中包含一个新函数autoparam,该函数试图找到最佳学习速率和正则化常数。您可以在此处看到森林火灾成本与迭代以及数据与预测的关系图:

谢谢你的阅读!我希望我的神经网络能帮助人们

import numpy

class NN:

    def __init__(self, sl):

        #sl = number of units (not counting bias unit) in layer l
        self.sl = sl
        self.layers = len(sl)

        #Create weights
        self.weights = []
        for idx in range(1, self.layers):
            self.weights.append(numpy.matrix(numpy.random.rand(self.sl[idx-1]+1, self.sl[idx]))/5)

        self.cost = []

    def update(self, input):

        if input.shape[1] != self.sl[0]:
            raise ValueError, 'The first layer must have a node for every feature'

        self.z = []
        self.a = []

        #Input activations.  Expected inputs as numpy matrix (Examples x Featrues) 
        self.a.append(numpy.hstack((numpy.ones((input.shape[0], 1)), input)))#Set inputs ai + bias unit

        #Hidden activations
        for weight in self.weights: 
            self.z.append(self.a[-1]*weight)
            self.a.append(numpy.hstack((numpy.ones((self.z[-1].shape[0], 1)), 1/(1+numpy.exp(-self.z[-1]))))) #sigmoid

        #Output activation
        self.a[-1] = self.z[-1] #Not logistic regression thus no sigmoid function
        del self.z[-1]

    def backPropagate(self, targets, lamda):

        m = float(targets.shape[0]) #m is number of examples

        #Calculate cost
        Cost = -1/m*sum(numpy.power(self.a[-1] - targets, 2))
        for weight in self.weights:
            Cost = Cost + lamda/(2*m)*numpy.power(weight[1:, :], 2).sum()
        self.cost.append(abs(float(Cost)))

        #Calculate error for each layer
        delta = []
        delta.append(self.a[-1] - targets)
        for idx in range(1, self.layers-1): #No delta for the input layer because it is the input
            weight = self.weights[-idx][1:, :] #Ignore bias unit
            dsigmoid = numpy.multiply(self.a[-(idx+1)][:,1:], 1-self.a[-(idx+1)][:,1:]) #dsigmoid is a(l).*(1-a(l))
            delta.append(numpy.multiply(delta[-1]*weight.T, dsigmoid)) #Ignore Regularization

        Delta = []
        for idx in range(self.layers-1):
            Delta.append(self.a[idx].T*delta[-(idx+1)])

        self.weight_gradient = []
        for idx in range(len(Delta)):
            self.weight_gradient.append(numpy.nan_to_num(1/m*Delta[idx] + numpy.vstack((numpy.zeros((1, self.weights[idx].shape[1])), lamda/m*self.weights[idx][1:, :]))))

    def train(self, input, targets, alpha, lamda, iterations = 1000):

        #alpha: learning rate
        #lamda: regularization term

        for i in range(iterations):
            self.update(input)
            self.backPropagate(targets, lamda)
            self.weights = [self.weights[idx] - alpha*self.weight_gradient[idx] for idx in range(len(self.weights))]

    def autoparam(self, data, alpha = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3], lamda = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10]):

        #data: numpy matrix with targets in last column
        #alpha: learning rate
        #lamda: regularization term

        #Create training, cross validation, and test sets
        while 1:
            try:
                numpy.seterr(invalid = 'raise')
                numpy.random.shuffle(data) #Shuffle data
                training_set = data[0:data.shape[0]/10*6, 0:-1]
                self.ntraining_set = (training_set-training_set.mean(axis=0))/training_set.std(axis=0)
                self.training_tgt = numpy.matrix(data[0:data.shape[0]/10*6, -1]).T

                cv_set = data[data.shape[0]/10*6:data.shape[0]/10*8, 0:-1]
                self.ncv_set = (cv_set-cv_set.mean(axis=0))/cv_set.std(axis=0)
                self.cv_tgt = numpy.matrix(data[data.shape[0]/10*6:data.shape[0]/10*8, -1]).T

                test_set = data[data.shape[0]/10*8:, 0:-1]
                self.ntest_set = (test_set-test_set.mean(axis=0))/test_set.std(axis=0)
                self.test_tgt = numpy.matrix(data[data.shape[0]/10*8:, -1]).T

                break

            except FloatingPointError:
                pass

        numpy.seterr(invalid = 'warn')
        cost = 999999
        for i in alpha:
            for j in lamda:
                self.__init__(self.sl)
                self.train(self.ntraining_set, self.training_tgt, i, j, 2000)
                current_cost = 1/float(cv_set.shape[0])*sum(numpy.square(self.predict(self.ncv_set) - self.cv_tgt)).tolist()[0][0]
                print current_cost
                if current_cost < cost:
                    cost = current_cost
                    self.learning_rate = i
                    self.regularization = j
        self.__init__(self.sl)

    def predict(self, input):

        self.update(input)
        return self.a[-1]

我认为你的偏差应该从加权输入中减去(或设置为-1)。从我在你的代码中看到的,神经元添加了所有的输入,包括偏差(设置为+1。

我在一些简单的示例上运行了您的代码,它似乎运行正常。您认为它为什么不起作用?在您的示例中,成本在最初的100次迭代中下降得非常快,然后保持不变,这就是我所说的预期行为。感谢您运行我的代码。您能检查一下您的tr吗n.predict(A)的输出是什么?对我来说,无论输入特征如何,所有预测值都是相同的(通常接近平均值(目标值)。例如,目标值=[4,5,6,7]n.predict(特征值)=[5.5,5.5,5.5,5.5]。将熊猫用于时间序列数据!您好。我将迭代次数减少到默认的1000次,并获得了更大的结构化数据集(518个示例)。这些不是统计数据,需要添加和学习偏差。您能解释一下为什么您认为这会有帮助吗?
import numpy

class NN:

    def __init__(self, sl):

        #sl = number of units (not counting bias unit) in layer l
        self.sl = sl
        self.layers = len(sl)

        #Create weights
        self.weights = []
        for idx in range(1, self.layers):
            self.weights.append(numpy.matrix(numpy.random.rand(self.sl[idx-1]+1, self.sl[idx]))/5)

        self.cost = []

    def update(self, input):

        if input.shape[1] != self.sl[0]:
            raise ValueError, 'The first layer must have a node for every feature'

        self.z = []
        self.a = []

        #Input activations.  Expected inputs as numpy matrix (Examples x Featrues) 
        self.a.append(numpy.hstack((numpy.ones((input.shape[0], 1)), input)))#Set inputs ai + bias unit

        #Hidden activations
        for weight in self.weights: 
            self.z.append(self.a[-1]*weight)
            self.a.append(numpy.hstack((numpy.ones((self.z[-1].shape[0], 1)), 1/(1+numpy.exp(-self.z[-1]))))) #sigmoid

        #Output activation
        self.a[-1] = self.z[-1] #Not logistic regression thus no sigmoid function
        del self.z[-1]

    def backPropagate(self, targets, lamda):

        m = float(targets.shape[0]) #m is number of examples

        #Calculate cost
        Cost = -1/m*sum(numpy.power(self.a[-1] - targets, 2))
        for weight in self.weights:
            Cost = Cost + lamda/(2*m)*numpy.power(weight[1:, :], 2).sum()
        self.cost.append(abs(float(Cost)))

        #Calculate error for each layer
        delta = []
        delta.append(self.a[-1] - targets)
        for idx in range(1, self.layers-1): #No delta for the input layer because it is the input
            weight = self.weights[-idx][1:, :] #Ignore bias unit
            dsigmoid = numpy.multiply(self.a[-(idx+1)][:,1:], 1-self.a[-(idx+1)][:,1:]) #dsigmoid is a(l).*(1-a(l))
            delta.append(numpy.multiply(delta[-1]*weight.T, dsigmoid)) #Ignore Regularization

        Delta = []
        for idx in range(self.layers-1):
            Delta.append(self.a[idx].T*delta[-(idx+1)])

        self.weight_gradient = []
        for idx in range(len(Delta)):
            self.weight_gradient.append(numpy.nan_to_num(1/m*Delta[idx] + numpy.vstack((numpy.zeros((1, self.weights[idx].shape[1])), lamda/m*self.weights[idx][1:, :]))))

    def train(self, input, targets, alpha, lamda, iterations = 1000):

        #alpha: learning rate
        #lamda: regularization term

        for i in range(iterations):
            self.update(input)
            self.backPropagate(targets, lamda)
            self.weights = [self.weights[idx] - alpha*self.weight_gradient[idx] for idx in range(len(self.weights))]

    def autoparam(self, data, alpha = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3], lamda = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10]):

        #data: numpy matrix with targets in last column
        #alpha: learning rate
        #lamda: regularization term

        #Create training, cross validation, and test sets
        while 1:
            try:
                numpy.seterr(invalid = 'raise')
                numpy.random.shuffle(data) #Shuffle data
                training_set = data[0:data.shape[0]/10*6, 0:-1]
                self.ntraining_set = (training_set-training_set.mean(axis=0))/training_set.std(axis=0)
                self.training_tgt = numpy.matrix(data[0:data.shape[0]/10*6, -1]).T

                cv_set = data[data.shape[0]/10*6:data.shape[0]/10*8, 0:-1]
                self.ncv_set = (cv_set-cv_set.mean(axis=0))/cv_set.std(axis=0)
                self.cv_tgt = numpy.matrix(data[data.shape[0]/10*6:data.shape[0]/10*8, -1]).T

                test_set = data[data.shape[0]/10*8:, 0:-1]
                self.ntest_set = (test_set-test_set.mean(axis=0))/test_set.std(axis=0)
                self.test_tgt = numpy.matrix(data[data.shape[0]/10*8:, -1]).T

                break

            except FloatingPointError:
                pass

        numpy.seterr(invalid = 'warn')
        cost = 999999
        for i in alpha:
            for j in lamda:
                self.__init__(self.sl)
                self.train(self.ntraining_set, self.training_tgt, i, j, 2000)
                current_cost = 1/float(cv_set.shape[0])*sum(numpy.square(self.predict(self.ncv_set) - self.cv_tgt)).tolist()[0][0]
                print current_cost
                if current_cost < cost:
                    cost = current_cost
                    self.learning_rate = i
                    self.regularization = j
        self.__init__(self.sl)

    def predict(self, input):

        self.update(input)
        return self.a[-1]
data = numpy.loadtxt(open('FF-data.csv', 'rb'), delimiter = ',', skiprows = 1)#Load
numpy.random.shuffle(data)

features = data[:,0:11]
nfeatures = (features-features.mean(axis=0))/features.std(axis=0)
targets = numpy.matrix(data[:, 12]).T

n = NN([11, 50, 1])

n.train(nfeatures, targets, 0.07, 0.0, 2000)

import matplotlib.pyplot
matplotlib.pyplot.subplot(221)
matplotlib.pyplot.plot(n.cost)
matplotlib.pyplot.title('Cost vs. Iteration')

matplotlib.pyplot.subplot(222)
matplotlib.pyplot.scatter(n.predict(nfeatures).tolist(), targets.tolist())
matplotlib.pyplot.plot(targets.tolist(), targets.tolist(), c = 'r')
matplotlib.pyplot.title('Data vs. Predicted')

matplotlib.pyplot.savefig('Report.png', format = 'png')
matplotlib.pyplot.close()