将直方图与R中的ggplot2重叠

将直方图与R中的ggplot2重叠,r,ggplot2,R,Ggplot2,我对R不熟悉,我正试图在同一张图上绘制3个直方图。 一切都很好,但我的问题是,你看不到两个直方图重叠的地方——它们看起来很像被切断的 当我绘制密度图时,它看起来很完美:每条曲线都被一条黑色的边框线包围,曲线重叠处的颜色看起来不同 有人能告诉我第一张图中的直方图是否可以实现类似的效果吗?这是我正在使用的代码: lowf0 <-read.csv (....) mediumf0 <-read.csv (....) highf0 <-read.csv(....) lowf0$utt&l

我对R不熟悉,我正试图在同一张图上绘制3个直方图。 一切都很好,但我的问题是,你看不到两个直方图重叠的地方——它们看起来很像被切断的

当我绘制密度图时,它看起来很完美:每条曲线都被一条黑色的边框线包围,曲线重叠处的颜色看起来不同

有人能告诉我第一张图中的直方图是否可以实现类似的效果吗?这是我正在使用的代码:

lowf0 <-read.csv (....)
mediumf0 <-read.csv (....)
highf0 <-read.csv(....)
lowf0$utt<-'low f0'
mediumf0$utt<-'medium f0'
highf0$utt<-'high f0'
histogram<-rbind(lowf0,mediumf0,highf0)
ggplot(histogram, aes(f0, fill = utt)) + geom_histogram(alpha = 0.2)
lowf0您当前的代码:

ggplot(histogram, aes(f0, fill = utt)) + geom_histogram(alpha = 0.2)
正在告诉
ggplot
使用
f0
中的所有值构建一个直方图,然后根据变量
utt
为该直方图的条带上色

取而代之的是创建三个单独的直方图,使用alpha混合,以便它们彼此可见。因此,您可能希望使用三个单独的调用
geom_histogram
,其中每个调用都获得自己的数据帧和填充:

ggplot(histogram, aes(f0)) + 
    geom_histogram(data = lowf0, fill = "red", alpha = 0.2) + 
    geom_histogram(data = mediumf0, fill = "blue", alpha = 0.2) +
    geom_histogram(data = highf0, fill = "green", alpha = 0.2) +
下面是一个具体示例,其中包含一些输出:

dat <- data.frame(xx = c(runif(100,20,50),runif(100,40,80),runif(100,0,30)),yy = rep(letters[1:3],each = 100))

ggplot(dat,aes(x=xx)) + 
    geom_histogram(data=subset(dat,yy == 'a'),fill = "red", alpha = 0.2) +
    geom_histogram(data=subset(dat,yy == 'b'),fill = "blue", alpha = 0.2) +
    geom_histogram(data=subset(dat,yy == 'c'),fill = "green", alpha = 0.2)

dat使用@joran的样本数据

ggplot(dat, aes(x=xx, fill=yy)) + geom_histogram(alpha=0.2, position="identity")
请注意,
geom_直方图的默认位置是“堆栈”

参见本页的“位置调整”:


虽然在ggplot2中绘制多个/重叠直方图只需要几行,但结果并不总是令人满意。需要正确使用边框和颜色,以确保眼睛能够区分直方图

以下功能平衡了边界颜色、不透明度和叠加密度图,使查看者能够区分不同的分布

单个直方图

plot_histogram <- function(df, feature) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)))) +
    geom_histogram(aes(y = ..density..), alpha=0.7, fill="#33AADE", color="black") +
    geom_density(alpha=0.3, fill="red") +
    geom_vline(aes(xintercept=mean(eval(parse(text=feature)))), color="black", linetype="dashed", size=1) +
    labs(x=feature, y = "Density")
    print(plt)
}
plot_multi_histogram <- function(df, feature, label_column) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) +
    geom_histogram(alpha=0.7, position="identity", aes(y = ..density..), color="black") +
    geom_density(alpha=0.7) +
    geom_vline(aes(xintercept=mean(eval(parse(text=feature)))), color="black", linetype="dashed", size=1) +
    labs(x=feature, y = "Density")
    plt + guides(fill=guide_legend(title=label_column))
}
a <-data.frame(n=rnorm(1000, mean = 1), category=rep('A', 1000))
b <-data.frame(n=rnorm(1000, mean = 2), category=rep('B', 1000))
c <-data.frame(n=rnorm(1000, mean = 3), category=rep('C', 1000))
d <-data.frame(n=rnorm(1000, mean = 4), category=rep('D', 1000))
e <-data.frame(n=rnorm(1000, mean = 5), category=rep('E', 1000))
f <-data.frame(n=rnorm(1000, mean = 6), category=rep('F', 1000))
many_distros <- do.call('rbind', list(a,b,c,d,e,f))
plot_multi_histogram <- function(df, feature, label_column, means) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) +
    geom_histogram(alpha=0.7, position="identity", aes(y = ..density..), color="black") +
    geom_density(alpha=0.7) +
    geom_vline(xintercept=means, color="black", linetype="dashed", size=1)
    labs(x=feature, y = "Density")
    plt + guides(fill=guide_legend(title=label_column))
}
options(repr.plot.width = 20, repr.plot.height = 8)
plot_multi_histogram(many_distros, "n", 'category', c(1, 2, 3, 4, 5, 6))

plot_multi_直方图中的额外参数是包含类别标签的列的名称

通过创建一个包含许多不同分布方式的数据帧,我们可以更显著地看到这一点:

plot_histogram <- function(df, feature) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)))) +
    geom_histogram(aes(y = ..density..), alpha=0.7, fill="#33AADE", color="black") +
    geom_density(alpha=0.3, fill="red") +
    geom_vline(aes(xintercept=mean(eval(parse(text=feature)))), color="black", linetype="dashed", size=1) +
    labs(x=feature, y = "Density")
    print(plt)
}
plot_multi_histogram <- function(df, feature, label_column) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) +
    geom_histogram(alpha=0.7, position="identity", aes(y = ..density..), color="black") +
    geom_density(alpha=0.7) +
    geom_vline(aes(xintercept=mean(eval(parse(text=feature)))), color="black", linetype="dashed", size=1) +
    labs(x=feature, y = "Density")
    plt + guides(fill=guide_legend(title=label_column))
}
a <-data.frame(n=rnorm(1000, mean = 1), category=rep('A', 1000))
b <-data.frame(n=rnorm(1000, mean = 2), category=rep('B', 1000))
c <-data.frame(n=rnorm(1000, mean = 3), category=rep('C', 1000))
d <-data.frame(n=rnorm(1000, mean = 4), category=rep('D', 1000))
e <-data.frame(n=rnorm(1000, mean = 5), category=rep('E', 1000))
f <-data.frame(n=rnorm(1000, mean = 6), category=rep('F', 1000))
many_distros <- do.call('rbind', list(a,b,c,d,e,f))
plot_multi_histogram <- function(df, feature, label_column, means) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) +
    geom_histogram(alpha=0.7, position="identity", aes(y = ..density..), color="black") +
    geom_density(alpha=0.7) +
    geom_vline(xintercept=means, color="black", linetype="dashed", size=1)
    labs(x=feature, y = "Density")
    plt + guides(fill=guide_legend(title=label_column))
}
options(repr.plot.width = 20, repr.plot.height = 8)
plot_multi_histogram(many_distros, "n", 'category', c(1, 2, 3, 4, 5, 6))

要为每个分布添加一条单独的垂直线,请执行以下操作:

plot_histogram <- function(df, feature) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)))) +
    geom_histogram(aes(y = ..density..), alpha=0.7, fill="#33AADE", color="black") +
    geom_density(alpha=0.3, fill="red") +
    geom_vline(aes(xintercept=mean(eval(parse(text=feature)))), color="black", linetype="dashed", size=1) +
    labs(x=feature, y = "Density")
    print(plt)
}
plot_multi_histogram <- function(df, feature, label_column) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) +
    geom_histogram(alpha=0.7, position="identity", aes(y = ..density..), color="black") +
    geom_density(alpha=0.7) +
    geom_vline(aes(xintercept=mean(eval(parse(text=feature)))), color="black", linetype="dashed", size=1) +
    labs(x=feature, y = "Density")
    plt + guides(fill=guide_legend(title=label_column))
}
a <-data.frame(n=rnorm(1000, mean = 1), category=rep('A', 1000))
b <-data.frame(n=rnorm(1000, mean = 2), category=rep('B', 1000))
c <-data.frame(n=rnorm(1000, mean = 3), category=rep('C', 1000))
d <-data.frame(n=rnorm(1000, mean = 4), category=rep('D', 1000))
e <-data.frame(n=rnorm(1000, mean = 5), category=rep('E', 1000))
f <-data.frame(n=rnorm(1000, mean = 6), category=rep('F', 1000))
many_distros <- do.call('rbind', list(a,b,c,d,e,f))
plot_multi_histogram <- function(df, feature, label_column, means) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) +
    geom_histogram(alpha=0.7, position="identity", aes(y = ..density..), color="black") +
    geom_density(alpha=0.7) +
    geom_vline(xintercept=means, color="black", linetype="dashed", size=1)
    labs(x=feature, y = "Density")
    plt + guides(fill=guide_legend(title=label_column))
}
options(repr.plot.width = 20, repr.plot.height = 8)
plot_multi_histogram(many_distros, "n", 'category', c(1, 2, 3, 4, 5, 6))
结果

plot_histogram <- function(df, feature) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)))) +
    geom_histogram(aes(y = ..density..), alpha=0.7, fill="#33AADE", color="black") +
    geom_density(alpha=0.3, fill="red") +
    geom_vline(aes(xintercept=mean(eval(parse(text=feature)))), color="black", linetype="dashed", size=1) +
    labs(x=feature, y = "Density")
    print(plt)
}
plot_multi_histogram <- function(df, feature, label_column) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) +
    geom_histogram(alpha=0.7, position="identity", aes(y = ..density..), color="black") +
    geom_density(alpha=0.7) +
    geom_vline(aes(xintercept=mean(eval(parse(text=feature)))), color="black", linetype="dashed", size=1) +
    labs(x=feature, y = "Density")
    plt + guides(fill=guide_legend(title=label_column))
}
a <-data.frame(n=rnorm(1000, mean = 1), category=rep('A', 1000))
b <-data.frame(n=rnorm(1000, mean = 2), category=rep('B', 1000))
c <-data.frame(n=rnorm(1000, mean = 3), category=rep('C', 1000))
d <-data.frame(n=rnorm(1000, mean = 4), category=rep('D', 1000))
e <-data.frame(n=rnorm(1000, mean = 5), category=rep('E', 1000))
f <-data.frame(n=rnorm(1000, mean = 6), category=rep('F', 1000))
many_distros <- do.call('rbind', list(a,b,c,d,e,f))
plot_multi_histogram <- function(df, feature, label_column, means) {
    plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) +
    geom_histogram(alpha=0.7, position="identity", aes(y = ..density..), color="black") +
    geom_density(alpha=0.7) +
    geom_vline(xintercept=means, color="black", linetype="dashed", size=1)
    labs(x=feature, y = "Density")
    plt + guides(fill=guide_legend(title=label_column))
}
options(repr.plot.width = 20, repr.plot.height = 8)
plot_multi_histogram(many_distros, "n", 'category', c(1, 2, 3, 4, 5, 6))


由于我在
许多发行版中明确地设置了平均值,所以我可以简单地将它们传入。或者,您可以简单地在函数内部计算这些值,并以这种方式使用。

我认为这应该是最重要的答案,因为它避免了重复代码
position='identity'
不仅仅是一个可读性更高的答案,它更适合于更复杂的绘图,例如对
aes()
aes\u string()的混合调用
。此答案还会自动显示颜色的图例,而@joran的答案则不会。然后可以使用例如
scale\u fill\u manual()
修改图例。此函数还可用于修改直方图中的颜色。此外,请确保
fill
中使用的变量是一个因素。我个人认为stackoverflow应首先列出投票最多的答案。“正确答案”只代表一个人的意见。当子集大小不同时,这不起作用。你知道怎么解决这个问题吗?(例如,使用“a”上有100点、“b”上有50点的数据)。这种方法的一个缺点是我很难让它显示图例(尽管这可能是因为我缺乏知识)。下面@kohske的另一个答案默认情况下会显示一个图例,然后可以使用
scale\u fill\u manual()
)修改该图例(以及直方图上显示的特定颜色)。确切地说,我们如何将图例添加到该图例中???@shenglih对于图例,kohske下面的答案更好。他的答案通常也更好。f0来自哪里?直方图和密度图的超链接被破坏了。这非常有用,希望得到更多的关注。@EdwardTyler非常正确。我希望我能不止一次地投票!这太棒了!我唯一希望改进的是垂直线。若我们可以为每个发行版获得单独的垂直线,那个就太好了。@mah65请参阅问题末尾的更新。