Warning: file_get_contents(/data/phpspider/zhask/data//catemap/8/xslt/3.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
Scikit learn 利用sklearn的id3算法训练决策树_Scikit Learn_Python 3.5_Decision Tree_Cross Validation_Confusion Matrix - Fatal编程技术网

Scikit learn 利用sklearn的id3算法训练决策树

Scikit learn 利用sklearn的id3算法训练决策树,scikit-learn,python-3.5,decision-tree,cross-validation,confusion-matrix,Scikit Learn,Python 3.5,Decision Tree,Cross Validation,Confusion Matrix,我正在尝试使用id3算法训练决策树。 其目的是获得所选特征的索引,估计发生率,并建立总混淆矩阵 该算法应将数据集拆分为训练集和测试集,并使用4倍交叉验证 我是新来的,我读过关于sklearn的教程和关于学习过程的理论,但我还是很困惑 我试着做的是: from sklearn.model_selection import cross_val_predict,KFold,cross_val_score, train_test_split, learning_curve from sklearn.t

我正在尝试使用id3算法训练决策树。 其目的是获得所选特征的索引,估计发生率,并建立总混淆矩阵

该算法应将数据集拆分为训练集和测试集,并使用4倍交叉验证

我是新来的,我读过关于sklearn的教程和关于学习过程的理论,但我还是很困惑

我试着做的是:

from sklearn.model_selection import cross_val_predict,KFold,cross_val_score, 
train_test_split, learning_curve
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix


X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1)
clf = DecisionTreeClassifier(criterion='entropy', random_state=0)
clf.fit(X_train,y_train)
results = cross_val_score(estimator=clf, X=X_train, y=y_train, cv=4)
print("Accuracy: %0.2f (+/- %0.2f)" % (results.mean(), results.std()))
y_pred = cross_val_predict(estimator=clf, X=x, y=y, cv=4)
conf_mat = confusion_matrix(y,y_pred)
print(conf_mat)
dot_data = tree.export_graphviz(clf, out_file='tree.dot') 
我有一些问题:

  • 如何获得培训中使用的功能索引列表?我必须穿过clf的树吗?找不到任何api方法来检索它们

  • 我必须使用“适合”、“交叉评分”和“交叉预测”吗?似乎他们都做了一些学习过程,但我无法从他们中的一个获得clf拟合、精度和混淆矩阵

  • 我是否必须使用测试集来估计数据集的折叠或划分数据集的折叠

  • 要检索培训过程中使用的功能列表,您可以通过以下方式从x中获取列:

    feature\u list=x.columns

    正如你所知道的,并不是每个特征在预测中都有用。您可以看到,在训练模型之后,使用

    clf.功能\u重要性\u

    要素列表中的要素索引与要素重要性列表中的要素索引相同

  • 如果使用交叉验证,则无法立即检索分数。
    cross_val_分数完成了交易,但获得分数的更好方法是使用cross_Valid。它的工作方式与cross_val_score相同,但您可以检索更多的分数值,只需使用make_score创建所需的每个分数并通过,下面是一个示例:

    from sklearn.model_selection import train_test_split,  cross_validate
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score, precision_score, make_scorer, recall_score 
    import pandas as pd, numpy as np       
    
    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    dtc = DecisionTreeClassifier()
    dtc_fit = dtc.fit(x_train, y_train)
    
    def tn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 0]
    def fp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 1]
    def fn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 0]
    def tp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 1]
    
    scoring = {
        'tp' : make_scorer(tp), 
        'tn' : make_scorer(tn), 
        'fp' : make_scorer(fp), 
        'fn' : make_scorer(fn), 
        'accuracy' : make_scorer(accuracy_score),
        'precision': make_scorer(precision_score),
        'f1_score' : make_scorer(f1_score),
        'recall'   : make_scorer(recall_score)
    }
    
    sc = cross_validate(dtc_fit, x_train, y_train, cv=5, scoring=scoring)
    
    print("Accuracy: %0.2f (+/- %0.2f)" % (sc['test_accuracy'].mean(), sc['test_accuracy'].std() * 2))
    print("Precision: %0.2f (+/- %0.2f)" % (sc['test_precision'].mean(), sc['test_precision'].std() * 2))
    print("f1_score: %0.2f (+/- %0.2f)" % (sc['test_f1_score'].mean(), sc['test_f1_score'].std() * 2))
    print("Recall: %0.2f (+/- %0.2f)" % (sc['test_recall'].mean(), sc['test_recall'].std() * 2), "\n")
    
    stp = math.ceil(sc['test_tp'].mean())
    stn = math.ceil(sc['test_tn'].mean())
    sfp = math.ceil(sc['test_fp'].mean())
    sfn = math.ceil(sc['test_fn'].mean())
    
    confusion_matrix = pd.DataFrame(
        [[stn, sfp], [sfn, stp]],
        columns=['Predicted 0', 'Predicted 1'],
        index=['True 0', 'True 1']
    )
    print(conf_m)
    
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import StratifiedShuffleSplit
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score, precision_score, make_scorer, recall_score
    import pandas as pd, numpy as np
    
    precision = []; recall = []; f1score = []; accuracy = []
    
    sss = StratifiedShuffleSplit(n_splits=10, test_size=0.2)    
    dtc = DecisionTreeClassifier()
    
    for train_index, test_index in sss.split(X, y):
        X_train, X_test = X.iloc[train_index], X.iloc[test_index]
        y_train, y_test = y.iloc[train_index], y.iloc[test_index]
    
        dtc.fit(X_train, y_train)
        pred = dtc.predict(X_test)
    
        precision.append(precision_score(y_test, pred))
        recall.append(recall_score(y_test, pred))
        f1score.append(f1_score(y_test, pred))
        accuracy.append(accuracy_score(y_test, pred))   
    
    print("Accuracy: %0.2f (+/- %0.2f)" % (np.mean(accuracy),np.std(accuracy) * 2))
    print("Precision: %0.2f (+/- %0.2f)" % (np.mean(precision),np.std(precision) * 2))
    print("f1_score: %0.2f (+/- %0.2f)" % (np.mean(f1score),np.std(f1score) * 2))
    print("Recall: %0.2f (+/- %0.2f)" % (np.mean(recall),np.std(recall) * 2))
    
  • 使用交叉函数时,函数本身会为测试和训练创建折叠。如果您想管理列车折叠和测试折叠,您可以使用K_折叠类自己完成。
    如果你需要保持班级平衡,总是需要一个好的得分决策树分类,你必须使用分层折叠。如果要随机洗牌折叠中包含的值,可以使用StratifiedShuffleSplit。这里有一个例子:

    from sklearn.model_selection import train_test_split,  cross_validate
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score, precision_score, make_scorer, recall_score 
    import pandas as pd, numpy as np       
    
    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    dtc = DecisionTreeClassifier()
    dtc_fit = dtc.fit(x_train, y_train)
    
    def tn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 0]
    def fp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 1]
    def fn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 0]
    def tp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 1]
    
    scoring = {
        'tp' : make_scorer(tp), 
        'tn' : make_scorer(tn), 
        'fp' : make_scorer(fp), 
        'fn' : make_scorer(fn), 
        'accuracy' : make_scorer(accuracy_score),
        'precision': make_scorer(precision_score),
        'f1_score' : make_scorer(f1_score),
        'recall'   : make_scorer(recall_score)
    }
    
    sc = cross_validate(dtc_fit, x_train, y_train, cv=5, scoring=scoring)
    
    print("Accuracy: %0.2f (+/- %0.2f)" % (sc['test_accuracy'].mean(), sc['test_accuracy'].std() * 2))
    print("Precision: %0.2f (+/- %0.2f)" % (sc['test_precision'].mean(), sc['test_precision'].std() * 2))
    print("f1_score: %0.2f (+/- %0.2f)" % (sc['test_f1_score'].mean(), sc['test_f1_score'].std() * 2))
    print("Recall: %0.2f (+/- %0.2f)" % (sc['test_recall'].mean(), sc['test_recall'].std() * 2), "\n")
    
    stp = math.ceil(sc['test_tp'].mean())
    stn = math.ceil(sc['test_tn'].mean())
    sfp = math.ceil(sc['test_fp'].mean())
    sfn = math.ceil(sc['test_fn'].mean())
    
    confusion_matrix = pd.DataFrame(
        [[stn, sfp], [sfn, stp]],
        columns=['Predicted 0', 'Predicted 1'],
        index=['True 0', 'True 1']
    )
    print(conf_m)
    
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import StratifiedShuffleSplit
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score, precision_score, make_scorer, recall_score
    import pandas as pd, numpy as np
    
    precision = []; recall = []; f1score = []; accuracy = []
    
    sss = StratifiedShuffleSplit(n_splits=10, test_size=0.2)    
    dtc = DecisionTreeClassifier()
    
    for train_index, test_index in sss.split(X, y):
        X_train, X_test = X.iloc[train_index], X.iloc[test_index]
        y_train, y_test = y.iloc[train_index], y.iloc[test_index]
    
        dtc.fit(X_train, y_train)
        pred = dtc.predict(X_test)
    
        precision.append(precision_score(y_test, pred))
        recall.append(recall_score(y_test, pred))
        f1score.append(f1_score(y_test, pred))
        accuracy.append(accuracy_score(y_test, pred))   
    
    print("Accuracy: %0.2f (+/- %0.2f)" % (np.mean(accuracy),np.std(accuracy) * 2))
    print("Precision: %0.2f (+/- %0.2f)" % (np.mean(precision),np.std(precision) * 2))
    print("f1_score: %0.2f (+/- %0.2f)" % (np.mean(f1score),np.std(f1score) * 2))
    print("Recall: %0.2f (+/- %0.2f)" % (np.mean(recall),np.std(recall) * 2))
    
  • 我希望我已经回答了你需要的一切

  • 要检索培训过程中使用的功能列表,您可以通过以下方式从x中获取列:

    feature\u list=x.columns

    正如你所知道的,并不是每个特征在预测中都有用。您可以看到,在训练模型之后,使用

    clf.功能\u重要性\u

    要素列表中的要素索引与要素重要性列表中的要素索引相同

  • 如果使用交叉验证,则无法立即检索分数。
    cross_val_分数完成了交易,但获得分数的更好方法是使用cross_Valid。它的工作方式与cross_val_score相同,但您可以检索更多的分数值,只需使用make_score创建所需的每个分数并通过,下面是一个示例:

    from sklearn.model_selection import train_test_split,  cross_validate
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score, precision_score, make_scorer, recall_score 
    import pandas as pd, numpy as np       
    
    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    dtc = DecisionTreeClassifier()
    dtc_fit = dtc.fit(x_train, y_train)
    
    def tn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 0]
    def fp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 1]
    def fn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 0]
    def tp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 1]
    
    scoring = {
        'tp' : make_scorer(tp), 
        'tn' : make_scorer(tn), 
        'fp' : make_scorer(fp), 
        'fn' : make_scorer(fn), 
        'accuracy' : make_scorer(accuracy_score),
        'precision': make_scorer(precision_score),
        'f1_score' : make_scorer(f1_score),
        'recall'   : make_scorer(recall_score)
    }
    
    sc = cross_validate(dtc_fit, x_train, y_train, cv=5, scoring=scoring)
    
    print("Accuracy: %0.2f (+/- %0.2f)" % (sc['test_accuracy'].mean(), sc['test_accuracy'].std() * 2))
    print("Precision: %0.2f (+/- %0.2f)" % (sc['test_precision'].mean(), sc['test_precision'].std() * 2))
    print("f1_score: %0.2f (+/- %0.2f)" % (sc['test_f1_score'].mean(), sc['test_f1_score'].std() * 2))
    print("Recall: %0.2f (+/- %0.2f)" % (sc['test_recall'].mean(), sc['test_recall'].std() * 2), "\n")
    
    stp = math.ceil(sc['test_tp'].mean())
    stn = math.ceil(sc['test_tn'].mean())
    sfp = math.ceil(sc['test_fp'].mean())
    sfn = math.ceil(sc['test_fn'].mean())
    
    confusion_matrix = pd.DataFrame(
        [[stn, sfp], [sfn, stp]],
        columns=['Predicted 0', 'Predicted 1'],
        index=['True 0', 'True 1']
    )
    print(conf_m)
    
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import StratifiedShuffleSplit
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score, precision_score, make_scorer, recall_score
    import pandas as pd, numpy as np
    
    precision = []; recall = []; f1score = []; accuracy = []
    
    sss = StratifiedShuffleSplit(n_splits=10, test_size=0.2)    
    dtc = DecisionTreeClassifier()
    
    for train_index, test_index in sss.split(X, y):
        X_train, X_test = X.iloc[train_index], X.iloc[test_index]
        y_train, y_test = y.iloc[train_index], y.iloc[test_index]
    
        dtc.fit(X_train, y_train)
        pred = dtc.predict(X_test)
    
        precision.append(precision_score(y_test, pred))
        recall.append(recall_score(y_test, pred))
        f1score.append(f1_score(y_test, pred))
        accuracy.append(accuracy_score(y_test, pred))   
    
    print("Accuracy: %0.2f (+/- %0.2f)" % (np.mean(accuracy),np.std(accuracy) * 2))
    print("Precision: %0.2f (+/- %0.2f)" % (np.mean(precision),np.std(precision) * 2))
    print("f1_score: %0.2f (+/- %0.2f)" % (np.mean(f1score),np.std(f1score) * 2))
    print("Recall: %0.2f (+/- %0.2f)" % (np.mean(recall),np.std(recall) * 2))
    
  • 使用交叉函数时,函数本身会为测试和训练创建折叠。如果您想管理列车折叠和测试折叠,您可以使用K_折叠类自己完成。
    如果你需要保持班级平衡,总是需要一个好的得分决策树分类,你必须使用分层折叠。如果要随机洗牌折叠中包含的值,可以使用StratifiedShuffleSplit。这里有一个例子:

    from sklearn.model_selection import train_test_split,  cross_validate
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score, precision_score, make_scorer, recall_score 
    import pandas as pd, numpy as np       
    
    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    dtc = DecisionTreeClassifier()
    dtc_fit = dtc.fit(x_train, y_train)
    
    def tn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 0]
    def fp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 1]
    def fn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 0]
    def tp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 1]
    
    scoring = {
        'tp' : make_scorer(tp), 
        'tn' : make_scorer(tn), 
        'fp' : make_scorer(fp), 
        'fn' : make_scorer(fn), 
        'accuracy' : make_scorer(accuracy_score),
        'precision': make_scorer(precision_score),
        'f1_score' : make_scorer(f1_score),
        'recall'   : make_scorer(recall_score)
    }
    
    sc = cross_validate(dtc_fit, x_train, y_train, cv=5, scoring=scoring)
    
    print("Accuracy: %0.2f (+/- %0.2f)" % (sc['test_accuracy'].mean(), sc['test_accuracy'].std() * 2))
    print("Precision: %0.2f (+/- %0.2f)" % (sc['test_precision'].mean(), sc['test_precision'].std() * 2))
    print("f1_score: %0.2f (+/- %0.2f)" % (sc['test_f1_score'].mean(), sc['test_f1_score'].std() * 2))
    print("Recall: %0.2f (+/- %0.2f)" % (sc['test_recall'].mean(), sc['test_recall'].std() * 2), "\n")
    
    stp = math.ceil(sc['test_tp'].mean())
    stn = math.ceil(sc['test_tn'].mean())
    sfp = math.ceil(sc['test_fp'].mean())
    sfn = math.ceil(sc['test_fn'].mean())
    
    confusion_matrix = pd.DataFrame(
        [[stn, sfp], [sfn, stp]],
        columns=['Predicted 0', 'Predicted 1'],
        index=['True 0', 'True 1']
    )
    print(conf_m)
    
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import StratifiedShuffleSplit
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score, precision_score, make_scorer, recall_score
    import pandas as pd, numpy as np
    
    precision = []; recall = []; f1score = []; accuracy = []
    
    sss = StratifiedShuffleSplit(n_splits=10, test_size=0.2)    
    dtc = DecisionTreeClassifier()
    
    for train_index, test_index in sss.split(X, y):
        X_train, X_test = X.iloc[train_index], X.iloc[test_index]
        y_train, y_test = y.iloc[train_index], y.iloc[test_index]
    
        dtc.fit(X_train, y_train)
        pred = dtc.predict(X_test)
    
        precision.append(precision_score(y_test, pred))
        recall.append(recall_score(y_test, pred))
        f1score.append(f1_score(y_test, pred))
        accuracy.append(accuracy_score(y_test, pred))   
    
    print("Accuracy: %0.2f (+/- %0.2f)" % (np.mean(accuracy),np.std(accuracy) * 2))
    print("Precision: %0.2f (+/- %0.2f)" % (np.mean(precision),np.std(precision) * 2))
    print("f1_score: %0.2f (+/- %0.2f)" % (np.mean(f1score),np.std(f1score) * 2))
    print("Recall: %0.2f (+/- %0.2f)" % (np.mean(recall),np.std(recall) * 2))
    

  • 我希望我已经回答了你需要的一切

    非常感谢你!1.我想在结果中得到所选的特征,所以我假设我可以使用特征的重要性?2.如果我使用“accurancy”参数进行评分,它会如何改变算法?难道我不需要提供一个评分函数来实现使用熵的增益信息,使其成为“id3”吗?3.交叉验证是否保持了类别平衡?1。是的,你说得对。只需观察特征u重要性u您可以选择预测中最重要的特征,以降低预测模型的复杂性(此步骤也称为特征选择)2。当你评估一个模型时,你不仅要使用准确度,还要使用精确度、回忆和其他分数。此分数可以更改您的功能选择过程3。交叉验证支持类平衡。使用我发布的解决方案,您也可以检索自己的混淆矩阵。简而言之,我已经向您展示了交叉验证在这一点上是如何工作的。您是否使用pandas作为pd?我发现一个错误“AttributeError:module'pandas'没有属性'DataFrame'”,这帮了大忙谢谢,还有一个问题-你说过精度、回忆和其他分数与学习过程相关,那么为什么在拟合后选择它们呢?它们还与id3特别相关吗?是的,我使用熊猫作为pd,对不起,我忘了包括它。无论如何,精确性、召回率和其他分数都是在验证步骤之后测量的。这些在每个预测模型中都是相关的,比如ID3。有些模型,如DecisionTree,可能会出现过度拟合()。精度为0.99的模型可能拟合过度。你只要看分数就可以看到这些东西非常感谢你!1.我想在结果中得到所选的特征,所以我假设我可以使用特征的重要性?2.如果我使用“accurancy”参数进行评分,它会如何改变算法?难道我不需要提供一个评分函数来实现使用熵的增益信息,使其成为“id3”吗?3.交叉验证是否保持了类别平衡?1。是的,你说得对。只需观察特征的重要性,就可以选择预测中最重要的特征,以降低预测的复杂性