C 为什么并行和串行版本的执行时间几乎相同

C 为什么并行和串行版本的执行时间几乎相同,c,parallel-processing,mpi,cluster-computing,C,Parallel Processing,Mpi,Cluster Computing,下面是C语言中的示例,比较串行和并行版本的执行时间。我过去常常测量执行时间。但执行时间大致相同。我的代码有问题吗?还是测量时间的方法 我的代码如下: 串行版本 结果是: # serial PI = 3.142431 Serial execution time: 262699 microseconds # parallel MPI task 1 has started... MPI task 0 has started... MPI task 3 has started... MPI task

下面是C语言中的示例,比较串行和并行版本的执行时间。我过去常常测量执行时间。但执行时间大致相同。我的代码有问题吗?还是测量时间的方法

我的代码如下:

串行版本 结果是:

# serial
PI = 3.142431
Serial execution time: 262699 microseconds

# parallel
MPI task 1 has started...
MPI task 0 has started...
MPI task 3 has started...
MPI task 2 has started...

Real value of PI: 3.1415926535897
Parallel execution time: 294984 microseconds

并行化在哪里

串行版本在
5000000次迭代中计算pi。
在并行版本中,每个任务也执行
50000*100
迭代,然后取平均值。 因此,并行版本可能“在统计上更准确”,但不会更快

另外,当我认为只需要一个时,您就可以使用
500
MPI\u Reduce()
。 总之,我甚至感到惊讶的是“并行”版本并没有慢很多


如果您想通过并行化更快地运行,每个任务应该计算从
5000000*taskid/numtasks
开始的
5000000/numtasks
迭代,然后您应该发出一个
MPI\u Reduce()

随机()
函数是在
stdlib.h
中原型化的,所以在代码中提供原型是个糟糕的主意
srandom()
函数是在
stdlib.h
中原型化的,所以在代码中提供原型是个糟糕的主意。我首先要问,为什么我希望并行版本更快。并行化计算是否允许使用原本闲置的CPU资源?然后我会检查工作是否实际分布在CPU核上。@user3629249我不熟悉C atm。感谢您的建议,我将修改代码。您可以尝试通过355.0/113.0快速、准确地计算
pi
,精确到小数位数正确!!!我只是运行了示例中的并行版本,但没有注意到这一点。感谢您提供有关MPI_Reduce()的建议。
/**********************************************************************
 * FILE: mpi_pi_reduce.c
 * OTHER FILES: dboard.c
 * DESCRIPTION:  
 *   MPI pi Calculation Example - C Version 
 *   Collective Communication example:  
 *   This program calculates pi using a "dartboard" algorithm.  See
 *   Fox et al.(1988) Solving Problems on Concurrent Processors, vol.1
 *   page 207.  All processes contribute to the calculation, with the
 *   master averaging the values for pi. This version uses mpc_reduce to 
 *   collect results
 * AUTHOR: Blaise Barney. Adapted from Ros Leibensperger, Cornell Theory
 *   Center. Converted to MPI: George L. Gusciora, MHPCC (1/95) 
 * LAST REVISED: 06/13/13 Blaise Barney
**********************************************************************/
#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void srandom (unsigned seed);
double dboard (int darts);
#define DARTS 50000     /* number of throws at dartboard */
#define ROUNDS 100      /* number of times "darts" is iterated */
#define MASTER 0        /* task ID of master task */

int main (int argc, char *argv[])
{
struct timeval tvalBefore, tvalAfter;
gettimeofday(&tvalBefore, NULL);

double  homepi,         /* value of pi calculated by current task */
        pisum,          /* sum of tasks' pi values */
        pi,             /* average of pi after "darts" is thrown */
        avepi;          /* average pi value for all iterations */
int taskid,         /* task ID - also used as seed number */
    numtasks,       /* number of tasks */
    rc,             /* return code */
    i;
MPI_Status status;

/* Obtain number of tasks and task ID */
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
MPI_Comm_rank(MPI_COMM_WORLD,&taskid);
printf ("MPI task %d has started...\n", taskid);

/* Set seed for random number generator equal to task ID */
srandom (taskid);

avepi = 0;
for (i = 0; i < ROUNDS; i++) {
   /* All tasks calculate pi using dartboard algorithm */
   homepi = dboard(DARTS);

   /* Use MPI_Reduce to sum values of homepi across all tasks 
    * Master will store the accumulated value in pisum 
    * - homepi is the send buffer
    * - pisum is the receive buffer (used by the receiving task only)
    * - the size of the message is sizeof(double)
    * - MASTER is the task that will receive the result of the reduction
    *   operation
    * - MPI_SUM is a pre-defined reduction function (double-precision
    *   floating-point vector addition).  Must be declared extern.
    * - MPI_COMM_WORLD is the group of tasks that will participate.
    */

   rc = MPI_Reduce(&homepi, &pisum, 1, MPI_DOUBLE, MPI_SUM,
                   MASTER, MPI_COMM_WORLD);

   /* Master computes average for this iteration and all iterations */
   if (taskid == MASTER) {
      pi = pisum/numtasks;
      avepi = ((avepi * i) + pi)/(i + 1); 
      //printf("   After %8d throws, average value of pi = %10.8f\n", (DARTS * (i + 1)),avepi);
   }    
} 
if (taskid == MASTER) {
   gettimeofday(&tvalAfter, NULL);
   long tm = (tvalAfter.tv_sec - tvalBefore.tv_sec) * 1000000L + tvalAfter.tv_usec - tvalBefore.tv_usec;
   printf("\nReal value of PI: 3.1415926535897 \n"); 
   printf("Parallel execution time: %ld microseconds\n", tm);
}
MPI_Finalize();

return 0;
}



/**************************************************************************
* subroutine dboard
* DESCRIPTION:
*   Used in pi calculation example codes. 
*   See mpi_pi_send.c and mpi_pi_reduce.c  
*   Throw darts at board.  Done by generating random numbers 
*   between 0 and 1 and converting them to values for x and y 
*   coordinates and then testing to see if they "land" in 
*   the circle."  If so, score is incremented.  After throwing the 
*   specified number of darts, pi is calculated.  The computed value 
*   of pi is returned as the value of this function, dboard. 
*
*   Explanation of constants and variables used in this function:
*   darts       = number of throws at dartboard
*   score       = number of darts that hit circle
*   n           = index variable
*   r           = random number scaled between 0 and 1
*   x_coord     = x coordinate, between -1 and 1
*   x_sqr       = square of x coordinate
*   y_coord     = y coordinate, between -1 and 1
*   y_sqr       = square of y coordinate
*   pi          = computed value of pi
****************************************************************************/

double dboard(int darts)
{
#define sqr(x)  ((x)*(x))
long random(void);
double x_coord, y_coord, pi, r; 
int score, n;
unsigned int cconst;  /* must be 4-bytes in size */
/*************************************************************************
 * The cconst variable must be 4 bytes. We check this and bail if it is
 * not the right size
 ************************************************************************/
if (sizeof(cconst) != 4) {
   printf("Wrong data size for cconst variable in dboard routine!\n");
   printf("See comments in source file. Quitting.\n");
   exit(1);
   }
   /* 2 bit shifted to MAX_RAND later used to scale random number between 0 and 1 */
   cconst = 2 << (31 - 1);
   score = 0;

   /* "throw darts at board" */
   for (n = 1; n <= darts; n++)  {
      /* generate random numbers for x and y coordinates */
      r = (double)random()/cconst;
      x_coord = (2.0 * r) - 1.0;
      r = (double)random()/cconst;
      y_coord = (2.0 * r) - 1.0;

      /* if dart lands in circle, increment score */
      if ((sqr(x_coord) + sqr(y_coord)) <= 1.0)
           score++;
      }

/* calculate pi */
pi = 4.0 * (double)score/(double)darts;
return(pi);
} 
mpicc serial.c -o serial.o
mpicc parallel.c -o parallel.o

mpirun -n 1 serial.o
mpirun -np 4 -pernode parallel.o
# serial
PI = 3.142431
Serial execution time: 262699 microseconds

# parallel
MPI task 1 has started...
MPI task 0 has started...
MPI task 3 has started...
MPI task 2 has started...

Real value of PI: 3.1415926535897
Parallel execution time: 294984 microseconds