Warning: file_get_contents(/data/phpspider/zhask/data//catemap/4/c/66.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181

Warning: file_get_contents(/data/phpspider/zhask/data//catemap/0/windows/14.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
非字节寻址arch的md5实现?_C_Embedded_Md5_Md5sum - Fatal编程技术网

非字节寻址arch的md5实现?

非字节寻址arch的md5实现?,c,embedded,md5,md5sum,C,Embedded,Md5,Md5sum,MD5的通用实现如下所示。其中,MD5Update函数接收指向chars的指针 我的体系结构是SHARC ADSP-21371,不可寻址字节,这意味着: sizeof(int32_t) == 1 因此,我不能真正按原样使用这个算法。我需要包装一些复杂性来解包每个int32\t数据 是否有一个现成的、兼容C99或C11的替代解决方案?我最终为八位组可寻址体系结构实现了MD5,以下是DSP SHARC(ADSP-21371) md5.h \ifndef MD5\u H #定义MD5_H #包括 #

MD5的通用实现如下所示。其中,
MD5Update
函数接收指向
chars
的指针

我的体系结构是SHARC ADSP-21371,不可寻址字节,这意味着:

sizeof(int32_t) == 1
因此,我不能真正按原样使用这个算法。我需要包装一些复杂性来解包每个
int32\t
数据


是否有一个现成的、兼容C99或C11的替代解决方案?

我最终为八位组可寻址体系结构实现了
MD5
,以下是DSP SHARC(ADSP-21371)

md5.h
\ifndef MD5\u H
#定义MD5_H
#包括
#包括
类型定义结构{
uint32_t状态[4];/!<状态(ABCD)
uint64\u t count;//!<位数
uint32_t缓冲区[16];/!<输入缓冲区
}md5_上下文_t;
void md5_init(md5_context_t*);
作废md5更新(md5上下文、uint32、大小);
无效md5_最终版本(md5_上下文*);
#endif/*MD5_H*/
md5.c
/**
*这是从RFC1321派生的MD5哈希算法的自定义实现
* https://www.ietf.org/rfc/rfc1321.txt
*
*最初的实现需要一个八位组可寻址处理器,而不是
*沙尔克案。因此,必须修改实现以支持这一点
*处理器。
*
*当输入缓冲区不是32位的倍数时,它有一个限制。
*在消息的末尾,插入一个从0x80开始的填充。如果
*消息为0x12345678,64字节缓冲区的开头为:
*
*0x012345678
*0x000000080
*0x000000000
* ...
*
*如果输入消息为0x78 0x56 0x34 0x12 0xAA,则输入缓冲区应为:
*
*0x012345678
*0x0000080AA
*0x000000000
* ...
*
*这在这个实现中不会发生,因为md5_的给定大小会更新
*表示为sizeof(long),在SHARC体系结构上为32位宽。
*/
#包括“md5.h”
#包括
#定义S117
#定义S12 12
#定义S13 17
#定义S1422
#定义S21 5
#定义S22 9
#定义S23 14
#定义S24 20
#定义s314
#定义S32 11
#定义s3316
#定义S34 23
#定义s416
#定义S42 10
#定义S43 15
#定义s4421
静态uint32_t填充[16]={
[0]=0x80,[1…sizeof(padding)/sizeof(uint32\u t)-2]=0};
/**
*F、G、H和I是基本的MD5函数。
*/
#定义F(x,y,z)((x)和(y))|((~x)和(z)))
#定义G(x,y,z)((x)和(z))|((y)和(~z)))
#定义H(x,y,z)((x)^(y)^(z))
#定义I(x,y,z)((y)^((x)|(~z)))
/**
*旋转\左旋转x个左n位。
*/
#定义左旋转(x,n)((x)>(32-(n)))
/**
*第1、2、3和4轮的FF、GG、HH和II转换。
*旋转与添加是分开的,以防止重新计算。
*/
#定义FF(a,b,c,d,x,s,ac){\
(a) +=F(b)、(c)、(d))+(x)+(uint32_t)(ac)\
(a) =向左旋转((a)、(s))\
(a) +=(b)\
}
#定义GG(a,b,c,d,x,s,ac){\
(a) +=G(b)、(c)、(d))+(x)+(uint32_t)(ac)\
(a) =向左旋转((a)、(s))\
(a) +=(b)\
}
#定义HH(a,b,c,d,x,s,ac){\
(a) +=H(b)、(c)、(d))+(x)+(uint32_t)(ac)\
(a) =向左旋转((a)、(s))\
(a) +=(b)\
}
#定义II(a,b,c,d,x,s,ac){\
(a) +=I(b)、(c)、(d))+(x)+(uint32_t)(ac)\
(a) =向左旋转((a)、(s))\
(a) +=(b)\
}
/**
*MD5基本转换。基于块转换状态。
*/
静态void md5_变换(uint32_t state[4],uint32_t x[16])
{
uint32_t a=状态[0];
uint32_t b=状态[1];
uint32_t c=状态[2];
uint32_t d=状态[3];
//第一轮
FF(a,b,c,d,x[0],S11,0xd76aa478);/*1*/
FF(d,a,b,c,x[1],S12,0xe8c7b756);/*2*/
FF(c,d,a,b,x[2],S13,0x242070db);/*3*/
FF(b,c,d,a,x[3],S14,0xc1bdceee);/*4*/
FF(a,b,c,d,x[4],S11,0xf57c0faf);/*5*/
FF(d,a,b,c,x[5],S12,0x4787c62a);/*6*/
FF(c,d,a,b,x[6],S13,0xa8304613);/*7*/
FF(b,c,d,a,x[7],S14,0xfd469501);/*8*/
FF(a,b,c,d,x[8],S11,0x698098d8);/*9*/
FF(d,a,b,c,x[9],S12,0x8b44f7af);/*10*/
FF(c,d,a,b,x[10],S13,0xffff5bb1);/*11*/
FF(b,c,d,a,x[11],S14,0x895cd7be);/*12*/
FF(a,b,c,d,x[12],s1110x6b901122);/*13*/
FF(d,a,b,c,x[13],S12,0xfd987193);/*14*/
FF(c,d,a,b,x[14],S13,0xa679438e);/*15*/
FF(b,c,d,a,x[15],S14,0x49b40821);/*16*/
//第二轮
GG(a,b,c,d,x[1],S21,0xf61e2562);/*17*/
GG(d,a,b,c,x[6],S22,0xc040b340);/*18*/
GG(c,d,a,b,x[11],S23,0x265e5a51);/*19*/
GG(b,c,d,a,x[0],S24,0xe9b6c7aa);/*20*/
GG(a,b,c,d,x[5],S21,0xd62f105d);/*21*/
GG(d,a,b,c,x[10],S22,0x02441453);/*22*/
GG(c,d,a,b,x[15],S23,0xd8a1e681);/*23*/
GG(b,c,d,a,x[4],S24,0xe7d3fbc8);/*24*/
GG(a,b,c,d,x[9],S21,0x21e1cde6);/*25*/
GG(d,a,b,c,x[14],S22,0xc33707d6);/*26*/
GG(c,d,a,b,x[3],S23,0xf4d50d87);/*27*/
GG(b,c,d,a,x[8],S24,0x455a14ed);/*28*/
GG(a,b,c,d,x[13],S21,0xa9e3e905);/*29*/
GG(d,a,b,c,x[2],S22,0xfcefa3f8);/*30*/
GG(c,d,a,b,x[7],s230x676f02d9);/*31*/
GG(b,c,d,a,x[12],S24,0x8d2a4c8a);/*32*/
//第三轮
HH(a,b,c,d,x[5],S31,0xfffa3942);/*33*/
HH(d,a,b,c,x[8],S32,0x8771f681);/*34*/
HH(c,d,a,b,x[11],S33,0x6d9d6122);/*35*/
HH(b,c,d,a,x[14],S34,0xfde5380c);/*36*/
HH(a,b,c,d,x[1],S31,0xa4beea44);/*37*/
HH(d,a,b,c,x[4],S32,0x4bdecfa9);/*38*/
HH(c,d,a,b,x[7],S33,0xf6bb4b60);/*39*/
HH(b,c,d,a,x[10],S34,0xbebfbc70);/*40*/
HH(a,b,c,d,x[13],S31,0x289b7ec6);/*41*/
HH(d,a,b,c,x[0],S32,0xeaa127fa);/*42*/
HH(c,d,a,b,x[3],S33,0xd4ef3085);/*43*/
HH(b,c,d,a,x[6],S34,0x04881d05);/*44*/
HH(a,b,c,d,x[9],S31,0xd9d4d039);/*45*/
HH(d,a,b,c,x[12],S32,0xe6db99e5);/*46*/
HH(c,d,a,b,x[15],S33,0x1fa27cf8);
#ifndef MD5_H
#define MD5_H

#include <stdlib.h>
#include <stdint.h>

typedef struct {
  uint32_t state[4];   //!< State (ABCD)
  uint64_t count;      //!< Number of bits
  uint32_t buffer[16]; //!< Input buffer
} md5_context_t;

void md5_init(md5_context_t*);
void md5_update(md5_context_t*, uint32_t*, size_t);
void md5_final(md5_context_t*);

#endif /* MD5_H */         
/**
 * This is a custom implementation for MD5 hash algorithm derived from RFC1321
 * https://www.ietf.org/rfc/rfc1321.txt
 *
 * The original implementation requires a octet-addressable processor which is not
 * the case of the SHARC. Thus the implementation must me modified to support this
 * processor.
 *
 * It comes with a limitation when the input buffer is not a multple of 32-bits.
 * At the end of the the message, a padding is inserted starting with 0x80. If the
 * message is 0x12345678, the beginning of the 64-bytes buffer will be:
 *
 * 0x012345678
 * 0x000000080
 * 0x000000000
 * ...
 *
 * If the input message is 0x78 0x56 0x34 0x12 0xAA, the input buffer should be:
 *
 * 0x012345678
 * 0x0000080AA
 * 0x000000000
 * ...
 *
 * Which will not be the case in this implementation because the given size to md5_update
 * is expressed in sizeof(long) which is 32-bits wide on a SHARC architecture.
 */
#include "md5.h"
#include <string.h>

#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21

static uint32_t padding[16] = {
    [0] = 0x80, [1 ... sizeof(padding) / sizeof(uint32_t) - 2] = 0};

/**
 * F, G, H and I are basic MD5 functions.
 */
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

/**
 * ROTATE_LEFT rotates x left n bits.
 */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/**
  * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
  * Rotation is separate from addition to prevent recomputation.
  */
#define FF(a, b, c, d, x, s, ac) { \
    (a) += F ((b), (c), (d)) + (x) + (uint32_t)(ac); \
    (a) = ROTATE_LEFT ((a), (s)); \
    (a) += (b); \
    }

#define GG(a, b, c, d, x, s, ac) { \
    (a) += G ((b), (c), (d)) + (x) + (uint32_t)(ac); \
    (a) = ROTATE_LEFT ((a), (s)); \
    (a) += (b); \
    }

#define HH(a, b, c, d, x, s, ac) { \
    (a) += H ((b), (c), (d)) + (x) + (uint32_t)(ac); \
    (a) = ROTATE_LEFT ((a), (s)); \
    (a) += (b); \
    }

#define II(a, b, c, d, x, s, ac) { \
    (a) += I ((b), (c), (d)) + (x) + (uint32_t)(ac); \
    (a) = ROTATE_LEFT ((a), (s)); \
    (a) += (b); \
    }

/**
 * MD5 basic transformation. Transforms state based on block.
 */
static void md5_transform(uint32_t state[4], uint32_t x[16])
{
  uint32_t a = state[0];
  uint32_t b = state[1];
  uint32_t c = state[2];
  uint32_t d = state[3];

  // Round 1
  FF(a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
  FF(d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
  FF(c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
  FF(b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
  FF(a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
  FF(d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
  FF(c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
  FF(b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
  FF(a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
  FF(d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
  FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
  FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
  FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
  FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
  FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
  FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

  // Round 2
  GG(a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
  GG(d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
  GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
  GG(b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
  GG(a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
  GG(d, a, b, c, x[10], S22, 0x02441453); /* 22 */
  GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
  GG(b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
  GG(a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
  GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
  GG(c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
  GG(b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
  GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
  GG(d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
  GG(c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
  GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

  // Round 3
  HH(a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
  HH(d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
  HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
  HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
  HH(a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
  HH(d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
  HH(c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
  HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
  HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
  HH(d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
  HH(c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
  HH(b, c, d, a, x[ 6], S34, 0x04881d05); /* 44 */
  HH(a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
  HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
  HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
  HH(b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */

  // Round 4
  II(a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
  II(d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
  II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
  II(b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
  II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
  II(d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
  II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
  II(b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
  II(a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
  II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
  II(c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
  II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
  II(a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
  II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
  II(c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
  II(b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */

  state[0] += a;
  state[1] += b;
  state[2] += c;
  state[3] += d;
}

/**
 * MD5 block update operation. Continues an MD5 message-digest
 * operation, processing another message block, and updating the
 * context.
 */
void md5_update(md5_context_t *context, uint32_t* input, size_t length)
{
    size_t size = 0;
    size_t index = (context->count >> 5) & 0xF; // Modulo 16
    size_t part_len = 16 - index;

    context->count += length << 5; // Update number of bits

    // Transform as many times as possible.
    if (length >= part_len) {
        memcpy(&context->buffer[index], input, sizeof(uint32_t) * part_len);
        md5_transform(context->state, context->buffer);
        for (size_t size = part_len; size + 15 < length; size += 16)
            md5_transform(context->state, &input[size]);
        index = 0;
    }

    // Buffer remaining input
    memcpy(&context->buffer[index], &input[size], sizeof(uint32_t) * (length - size));
}

/**
 * MD5 finalization. Ends an MD5 message-digest operation, writing the
 * the message digest and zeroizing the context.
 */
void md5_final(md5_context_t *context)
{
  int64_t count = context->count; // Count before padding

  // Pad out to 56 mod 64 bytes.
  size_t index = (context->count >> 5) & 0xf;
  size_t padLen = index < 14 ? 14 - index : 30 - index;

  md5_update(context, padding, padLen);
  md5_update(context, &((uint32_t*)(&count))[1], 1);
  md5_update(context, &((uint32_t*)(&count))[0], 1);
}

/**
 * MD5 initialization. Begins an MD5 operation, writing a new context.
 */
void md5_init(md5_context_t *context)
{
  context->count = 0;

  context->state[0] = 0x67452301;
  context->state[1] = 0xefcdab89;
  context->state[2] = 0x98badcfe;
  context->state[3] = 0x10325476;
}