Warning: file_get_contents(/data/phpspider/zhask/data//catemap/6/cplusplus/158.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
C++ 在排序和旋转的数组中搜索_C++_C_Arrays_Algorithm - Fatal编程技术网

C++ 在排序和旋转的数组中搜索

C++ 在排序和旋转的数组中搜索,c++,c,arrays,algorithm,C++,C,Arrays,Algorithm,在准备面试时,我偶然发现了一个有趣的问题: 您得到了一个数组,该数组经过排序,然后进行旋转 例如: 让arr=[1,2,3,4,5],它被排序 将其向右旋转两次,给出[4,5,1,2,3] 现在,如何在这个排序+旋转数组中进行最佳搜索 可以取消旋转数组,然后进行二进制搜索。但这并不比在输入数组中进行线性搜索更好,因为两者都是最坏情况下的O(N) 请提供一些提示。我在谷歌上搜索了很多关于这方面的特殊算法,但没有找到 < P>我的第一次尝试是用二进制搜索找到旋转的次数。这可以通过使用通常的二进

在准备面试时,我偶然发现了一个有趣的问题:

您得到了一个数组,该数组经过排序,然后进行旋转

例如:

  • arr=[1,2,3,4,5]
    ,它被排序
  • 将其向右旋转两次,给出
    [4,5,1,2,3]
现在,如何在这个排序+旋转数组中进行最佳搜索

可以取消旋转数组,然后进行二进制搜索。但这并不比在输入数组中进行线性搜索更好,因为两者都是最坏情况下的O(N)

请提供一些提示。我在谷歌上搜索了很多关于这方面的特殊算法,但没有找到


<我理解C和C++。< /P> < P>我的第一次尝试是用二进制搜索找到旋转的次数。这可以通过使用通常的二进制搜索机制找到索引[n ] [n+>a[n+1] ]来完成。
然后执行常规的二进制搜索,同时按找到的班次旋转所有索引。

您可以执行两次二进制搜索:首先查找索引
i
,以便
arr[i]>arr[i+1]

显然,
(arr\[1]、arr[2]、…、arr[i])
(arr[i+1]、arr[i+2]、…、arr[n])
都是排序数组


然后,如果
arr[1]如果知道数组已向右旋转了s,则只需执行将s向右移动的二进制搜索。这是O(lg N)

我的意思是,将左极限初始化为s,将右极限初始化为(s-1)mod N,并在它们之间进行二进制搜索,注意在正确的区域工作

如果您不知道数组旋转了多少,可以使用二进制搜索确定旋转的大小,即O(lgn),然后执行移位二进制搜索,O(lgn),仍然是O(lgn)的总和。

如果您知道数组旋转了多少(远),您仍然可以执行二进制搜索


诀窍是你得到两个级别的索引:你在一个虚拟的0..n-1范围内做b.s.,然后在实际查找一个值时取消旋转它们

不需要先旋转阵列。可以对旋转数组使用二进制搜索(经过一些修改)

N是您要搜索的号码:

读取第一个数(ARR[STAR])和数组中间的数(ARR[Endo]):

  • 如果arr[start]>arr[end]-->上半部分未排序,但下半部分已排序:

    • 如果arr[end]>N-->则该数字在索引中:(中间+N-arr[end])

    • 如果N,则在数组的第一部分重复搜索(请参见“结束”是数组前半部分的中间部分等)


(如果第一部分已排序,但第二部分未排序,则相同)

这可以在
O(logN)
中使用稍微修改的二进制搜索完成


排序+旋转数组的有趣特性是,当您将其分成两半时,两半中至少有一个将始终被排序

Let input array arr = [4,5,6,7,8,9,1,2,3]
number of elements  = 9
mid index = (0+8)/2 = 4

[4,5,6,7,8,9,1,2,3]
         ^
 left   mid  right
如图所示,右侧子数组未排序,而左侧子数组已排序

如果mid恰好是旋转点,则左右两个子数组都将被排序

[6,7,8,9,1,2,3,4,5]
         ^
但是在任何情况下,必须对一半(子数组)进行排序

通过比较每一半的开始和结束元素,我们可以很容易地知道哪一半被排序

一旦我们找到了哪一半被排序,我们就可以看到关键是否存在于与极端的半简单比较中

如果键存在于那一半中,我们递归调用那一半上的函数
否则我们递归地调用另一半的搜索

我们在每次调用中丢弃数组的一半,这使得该算法
O(logN)

伪代码:

function search( arr[], key, low, high)

        mid = (low + high) / 2

        // key not present
        if(low > high)
                return -1

        // key found
        if(arr[mid] == key)
                return mid

        // if left half is sorted.
        if(arr[low] <= arr[mid])

                // if key is present in left half.
                if (arr[low] <= key && arr[mid] >= key) 
                        return search(arr,key,low,mid-1)

                // if key is not present in left half..search right half.
                else                 
                        return search(arr,key,mid+1,high)
                end-if

        // if right half is sorted. 
        else    
                // if key is present in right half.
                if(arr[mid] <= key && arr[high] >= key) 
                        return search(arr,key,mid+1,high)

                // if key is not present in right half..search in left half.
                else
                        return search(arr,key,low,mid-1)
                end-if
        end-if  

end-function
功能搜索(arr[],键,低,高)
中=(低+高)/2
//钥匙不存在
如果(低>高)
返回-1
//找到钥匙
if(arr[mid]==键)
中途返回
//如果左半部分已排序。
if(arr[low]
short mod_binary_搜索(int m,int*arr,short start,short end)
{
如果(启动arr[mid]&&m
当数组中存在重复元素时,接受的答案有一个错误。例如,
arr={2,3,2,2}
我们正在查找3。然后接受答案中的程序将返回-1而不是1

这一采访问题在《破解编码采访》一书中进行了详细讨论。该书特别讨论了重复元素的情况。由于op在评论中说数组元素可以是任何东西,我将在下面以伪代码的形式给出我的解决方案:

function search( arr[], key, low, high)

    if(low > high)
        return -1

    mid = (low + high) / 2

    if(arr[mid] == key)
        return mid

    // if the left half is sorted.
    if(arr[low] < arr[mid]) {

        // if key is in the left half
        if (arr[low] <= key && key <= arr[mid]) 
            // search the left half
            return search(arr,key,low,mid-1)
        else
            // search the right half                 
            return search(arr,key,mid+1,high)
        end-if

    // if the right half is sorted. 
    else if(arr[mid] < arr[low])    
        // if the key is in the right half.
        if(arr[mid] <= key && arr[high] >= key) 
            return search(arr,key,mid+1,high)
        else
            return search(arr,key,low,mid-1)
        end-if

    else if(arr[mid] == arr[low])

        if(arr[mid] != arr[high])
            // Then elements in left half must be identical. 
            // Because if not, then it's impossible to have either arr[mid] < arr[high] or arr[mid] > arr[high]
            // Then we only need to search the right half.
            return search(arr, mid+1, high, key)
        else 
            // arr[low] = arr[mid] = arr[high], we have to search both halves.
            result = search(arr, low, mid-1, key)
            if(result == -1)
                return search(arr, mid+1, high, key)
            else
                return result
   end-if
end-function
功能搜索(arr[],键,低,高)
如果(低>高)
返回-1
中=(低+高)/2
if(arr[mid]==键)
中途返回
//如果左半部分已排序。
如果(arr[低]int旋转的二进制搜索(int A[],int N,int键){
int L=0;
int R=N-1;

而(L对上述帖子的回复“这一采访问题在《破解编码采访》一书中进行了详细讨论。该书专门讨论了重复元素的条件。由于op在评论中说数组元素可以是任何东西,我在下面以伪代码的形式给出了我的解决方案:”

您的解决方案是O(n)!!(最后一个if条件,即检查数组的两个部分是否存在单个条件,使其成为线性时间复杂度的sol)

我最好做一次线性搜索,而不是在一轮编码过程中陷入错误和分割错误的迷宫

对于旋转排序数组(包含重复项)中的搜索,我认为没有比O(n)更好的解决方案了
function search( arr[], key, low, high)

    if(low > high)
        return -1

    mid = (low + high) / 2

    if(arr[mid] == key)
        return mid

    // if the left half is sorted.
    if(arr[low] < arr[mid]) {

        // if key is in the left half
        if (arr[low] <= key && key <= arr[mid]) 
            // search the left half
            return search(arr,key,low,mid-1)
        else
            // search the right half                 
            return search(arr,key,mid+1,high)
        end-if

    // if the right half is sorted. 
    else if(arr[mid] < arr[low])    
        // if the key is in the right half.
        if(arr[mid] <= key && arr[high] >= key) 
            return search(arr,key,mid+1,high)
        else
            return search(arr,key,low,mid-1)
        end-if

    else if(arr[mid] == arr[low])

        if(arr[mid] != arr[high])
            // Then elements in left half must be identical. 
            // Because if not, then it's impossible to have either arr[mid] < arr[high] or arr[mid] > arr[high]
            // Then we only need to search the right half.
            return search(arr, mid+1, high, key)
        else 
            // arr[low] = arr[mid] = arr[high], we have to search both halves.
            result = search(arr, low, mid-1, key)
            if(result == -1)
                return search(arr, mid+1, high, key)
            else
                return result
   end-if
end-function
int rotated_binary_search(int A[], int N, int key) {
  int L = 0;
  int R = N - 1;

  while (L <= R) {
    // Avoid overflow, same as M=(L+R)/2
    int M = L + ((R - L) / 2);
    if (A[M] == key) return M;

    // the bottom half is sorted
    if (A[L] <= A[M]) {
      if (A[L] <= key && key < A[M])
        R = M - 1;
      else
        L = M + 1;
    }
    // the upper half is sorted
    else {
      if (A[M] < key && key <= A[R])
        L = M + 1;
      else
        R = M - 1;
    }
  }
  return -1;
}
The possible shifts are: [1,2,3,4,5] // k = 0 [5,1,2,3,4] // k = 1 [4,5,1,2,3] // k = 2 [3,4,5,1,2] // k = 3 [2,3,4,5,1] // k = 4 [1,2,3,4,5] // k = 5%5 = 0
// This implementation takes O(logN) time
// This function returns the amount of shift of the sorted array, which is
// equivalent to the index of the minimum element of the shifted sorted array. 
#include <vector> 
#include <iostream> 
using namespace std; 

int binarySearchFindK(vector<int>& nums, int begin, int end)
{
    int mid = ((end + begin)/2); 
    // Base cases
    if((mid > begin && nums[mid] < nums[mid-1]) || (mid == begin && nums[mid] <= nums[end]))     
        return mid; 
    // General case 
    if (nums[mid] > nums[end]) 
    {
        begin = mid+1; 
        return binarySearchFindK(nums, begin, end); 
    }
    else
    {
        end = mid -1; 
        return binarySearchFindK(nums, begin, end); 
    }   
}  
int getPivot(vector<int>& nums)
{
    if( nums.size() == 0) return -1; 
    int result = binarySearchFindK(nums, 0, nums.size()-1); 
    return result; 
}

// Once you execute the above, you will know the shift k, 
// you can easily search for the element you need implementing the bottom 

int binarySearchSearch(vector<int>& nums, int begin, int end, int target, int pivot)
{
    if (begin > end) return -1; 
    int mid = (begin+end)/2;
    int n = nums.size();  
    if (n <= 0) return -1; 

    while(begin <= end)
    {
        mid = (begin+end)/2; 
        int midFix = (mid+pivot) % n; 
        if(nums[midFix] == target) 
        {
            return midFix; 
        }
        else if (nums[midFix] < target)
        {
            begin = mid+1; 
        }
        else
        {
            end = mid - 1; 
        }
    }
    return -1; 
}
int search(vector<int>& nums, int target) {
    int pivot = getPivot(nums); 
    int begin = 0; 
    int end = nums.size() - 1; 
    int result = binarySearchSearch(nums, begin, end, target, pivot); 
    return result; 
}
Hope this helps!=) Soon Chee Loong, University of Toronto
public class PivotedArray {

//56784321 first increasing than decreasing
public static void main(String[] args) {
    // TODO Auto-generated method stub
    int [] data ={5,6,7,8,4,3,2,1,0,-1,-2};

    System.out.println(findNumber(data, 0, data.length-1,-2));

}

static int findNumber(int data[], int start, int end,int numberToFind){

    if(data[start] == numberToFind){
        return start;
    }

    if(data[end] == numberToFind){
        return end;
    }
    int mid = (start+end)/2;
    if(data[mid] == numberToFind){
        return mid;
    }
    int idx = -1;
    int midData = data[mid];
    if(numberToFind < midData){
        if(midData > data[mid+1]){
            idx=findNumber(data, mid+1, end, numberToFind);
        }else{
            idx =  findNumber(data, start, mid-1, numberToFind);
        }
    }

    if(numberToFind > midData){
        if(midData > data[mid+1]){
            idx =  findNumber(data, start, mid-1, numberToFind);

        }else{
            idx=findNumber(data, mid+1, end, numberToFind);
        }
    }
    return idx;
}

}
def findInRotatedArray(array, num):

lo,hi = 0, len(array)-1
ix = None


while True:


    if hi - lo <= 1:#Im down to two indices to check by now
        if (array[hi] == num):  ix = hi
        elif (array[lo] == num): ix = lo
        else: ix = None
        break

    mid = lo + (hi - lo)/2
    print lo, mid, hi

    #If top half is sorted and number is in between
    if array[hi] >= array[mid] and num >= array[mid] and num <= array[hi]:
        lo = mid

    #If bottom half is sorted and number is in between
    elif array[mid] >= array[lo] and num >= array[lo] and num <= array[mid]:
        hi = mid


    #If top half is rotated I know I need to keep cutting the array down
    elif array[hi] <= array[mid]:
        lo = mid

    #If bottom half is rotated I know I need to keep cutting down
    elif array[mid] <= array[lo]:
        hi = mid

print "Index", ix
test = [3, 4, 5, 1, 2]
test1 = [2, 3, 2, 2, 2]

def find_rotated(col, num):
    pivot = find_pivot(col)
    return bin_search(col, 0, len(col), pivot, num)

def find_pivot(col):
    prev = col[-1]
    for n, curr in enumerate(col):
        if prev > curr:
            return n
        prev = curr
    raise Exception("Col does not seem like rotated array")

def rotate_index(col, pivot, position):
    return (pivot + position) % len(col)

def bin_search(col, low, high, pivot, num):
    if low > high:
        return None
    mid = (low + high) / 2
    rotated_mid = rotate_index(col, pivot, mid)
    val = col[rotated_mid]
    if (val == num):
        return rotated_mid
    elif (num > val):
        return bin_search(col, mid + 1, high, pivot, num)
    else:
        return bin_search(col, low, mid - 1,  pivot, num)

print(find_rotated(test, 2))
print(find_rotated(test, 4))
print(find_rotated(test1, 3))
bool search(int *a, int length, int key)
{
int pivot( length / 2 ), lewy(0), prawy(length);
if (key > a[length - 1] || key < a[0]) return false;
while (lewy <= prawy){
    if (key == a[pivot]) return true;
    if (key > a[pivot]){
        lewy = pivot;
        pivot += (prawy - lewy) / 2 ? (prawy - lewy) / 2:1;}
    else{
        prawy = pivot;
        pivot -= (prawy - lewy) / 2 ? (prawy - lewy) / 2:1;}}
return false;
}
public int mBinarySearch(int[] array, int low, int high, int key)
{
    if (low > high)
        return -1; //key not present

    int mid = (low + high)/2;

    if (array[mid] == key)
        if (mid > 0 && array[mid-1] != key)
            return mid;

    if (array[low] <= array[mid]) //left half is sorted
    {
        if (array[low] <= key && array[mid] >= key)
            return mBinarySearch(array, low, mid-1, key);
        else //search right half
            return mBinarySearch(array, mid+1, high, key);
    }
    else //right half is sorted
    {
        if (array[mid] <= key && array[high] >= key)
            return mBinarySearch(array, mid+1, high, key);
        else
            return mBinarySearch(array, low, mid-1, key);
    }       

}
if (mid > 0 && array[mid-1] != key)
public int search(int[] nums, int target) {
    int l = 0;
    int r = nums.length-1;
    while(l<=r){
        int mid = (l+r)>>1;
        if(nums[mid]==target){
            return mid;
        }
        if(nums[mid]> nums[r]){
            if(target > nums[mid] || nums[r]>= target)l = mid+1;
            else r = mid-1;
        }
        else{
            if(target <= nums[r] && target > nums[mid]) l = mid+1;
            else r = mid -1;
        }
    }
    return -1;
}
#include "bits/stdc++.h"
using namespace std;
int searchOnRotated(vector<int> &arr, int low, int high, int k) {

    if(low > high)
        return -1;

    if(arr[low] <= arr[high]) {

        int p = lower_bound(arr.begin()+low, arr.begin()+high, k) - arr.begin();
        if(p == (low-high)+1)
            return -1;
        else
            return p; 
    }

    int mid = (low+high)/2;

    if(arr[low] <= arr[mid]) {

        if(k <= arr[mid] && k >= arr[low])
            return searchOnRotated(arr, low, mid, k);
        else
            return searchOnRotated(arr, mid+1, high, k);
    }
    else {

        if(k <= arr[high] && k >= arr[mid+1])
            return searchOnRotated(arr, mid+1, high, k);
        else
            return searchOnRotated(arr, low, mid, k);
    }
}
int main() {

    int n, k; cin >> n >> k;
    vector<int> arr(n);
    for(int i=0; i<n; i++) cin >> arr[i];
    int p = searchOnRotated(arr, 0, n-1, k);
    cout<<p<<"\n";
    return 0;
}
public class SearchingInARotatedSortedARRAY {
    public static void main(String[] args) {
        int[] a = { 4, 5, 6, 0, 1, 2, 3 };

        System.out.println(search1(a, 6));

    }

    private static int search1(int[] a, int target) {
        int start = 0;
        int last = a.length - 1;
        while (start + 1 < last) {
            int mid = start + (last - start) / 2;

            if (a[mid] == target)
                return mid;
            // if(a[start] < a[mid]) => Then this part of the array is not rotated
            if (a[start] < a[mid]) {
                if (a[start] <= target && target <= a[mid]) {
                    last = mid;
                } else {
                    start = mid;
                }
            }
            // this part of the array is rotated
            else {
                if (a[mid] <= target && target <= a[last]) {
                    start = mid;
                } else {
                    last = mid;
                }
            }
        } // while
        if (a[start] == target) {
            return start;
        }
        if (a[last] == target) {
            return last;
        }
        return -1;
    }
}
var search = function(nums, target,low,high) {
    low= (low || low === 0) ? low : 0;

    high= (high || high == 0) ? high : nums.length -1;

    if(low > high)
        return -1;

    let mid = Math.ceil((low + high) / 2);


    if(nums[mid] == target)
        return mid;

    if(nums[low] < nums[mid]) {
        // if key is in the left half
        if (nums[low] <= target && target <= nums[mid]) 
            // search the left half
            return search(nums,target,low,mid-1);
        else
            // search the right half                 
            return search(nums,target,mid+1,high);
    } else {
        // if the key is in the right half.
        if(nums[mid] <= target && nums[high] >= target) 
            return search(nums,target,mid+1,high)
        else
            return search(nums,target,low,mid-1)
    }
};
import java.util.*;

class Main{
    public static void main(String args[]){
        Scanner sc = new Scanner(System.in);
        int n=sc.nextInt();
        int arr[]=new int[n];
        int max=Integer.MIN_VALUE;
        int min=Integer.MAX_VALUE;
        int min_index=0,max_index=n;

        for(int i=0;i<n;i++){
            arr[i]=sc.nextInt();
            if(arr[i]>max){
                max=arr[i];
            max_index=i;
            }
            if(arr[i]<min){
                min=arr[i];
                min_index=i;
            }

        }

        int element=sc.nextInt();
        int index;
        if(element>arr[n-1]){
            index=Arrays.binarySearch(arr,0,max_index+1,element);
        }
        else {
             index=Arrays.binarySearch(arr,min_index,n,element);
        }
        if(index>=0){
            System.out.println(index);
        }
        else{
            System.out.println(-1);
        }
    }

}
a = [2,.....................2...........3,6,2......2]
b = [2.........3,6,2........2......................2]
public class Solution {
        public int Search(int[] nums, int target) {
             if (nums.Length == 0) return -1;
                int low = 0;
                int high = nums.Length - 1;
                while (low <= high)
                {
                    int mid = (low + high) / 2;
                    if (nums[mid] == target) return mid;
                    if (nums[low] <= nums[mid]) // 3 4 5 6 0 1 2
                    {
                        if (target >= nums[low] && target <= nums[mid])
                            high = mid;
                        else
                            low = mid + 1;
                    }
                    else // 5 6 0 1 2 3 4
                    {
                        if (target >= nums[mid] && target <= nums[high])
                            low= mid;
                        else
                            high = mid - 1;
                    }
                }
                return -1;
        }
    }
 func searchInArray(A:[Int],key:Int)->Int{
        for i in 0..<A.count{
            if key == A[i] {
                print(i)
                return i
            }
        }
        print(-1)
        return -1
    }