C++ 如果失败,则返回OpenCV camshift值

C++ 如果失败,则返回OpenCV camshift值,c++,opencv,computer-vision,C++,Opencv,Computer Vision,我是opencv新手,所以我想知道如果CamShift无法跟踪任何rotatedrect,返回值是多少。我该怎么处理呢?我的意思是,失去跟踪目标在现实中是可能的。如何在C++中捕获这个错误?< p> Read CAMSHIV..CPP位于模块\Vistue\ScR\ 例如cvCamShift(): cvCamShift(const void*imgProb,CvRect windowIn, CVTERM标准, CvConnectedComp*_comp, CvBox2D*盒) { 常数int公差

我是opencv新手,所以我想知道如果CamShift无法跟踪任何rotatedrect,返回值是多少。我该怎么处理呢?我的意思是,失去跟踪目标在现实中是可能的。如何在C++中捕获这个错误?

< p> Read CAMSHIV..CPP位于模块\Vistue\ScR\

例如cvCamShift():

cvCamShift(const void*imgProb,CvRect windowIn,
CVTERM标准,
CvConnectedComp*_comp,
CvBox2D*盒)
{
常数int公差=10;
瞬间;
双m00=0,m10,m01,mu20,mu11,mu02,inv_m00;
双a、b、c、xc、yc;
双旋转a,旋转c;
双θ=0,平方;
双cs,sn;
双倍长度=0,宽度=0;
int itersUsed=0;
CvConnectedComp comp;
CvMat cur_win,stub,*mat=(CvMat*)imgProb;
comp.rect=windowIn;
mat=cvGetMat(mat和存根);
ITERSUESED=cvMeanShift(材料、窗口、标准和组件);
windowIn=comp.rect;
windowIn.x-=公差;
if(windowIn.x<0)
windowIn.x=0;
windowIn.y-=公差;
如果(窗口输入y<0)
windowIn.y=0;
窗宽+=2*公差;
如果(windowIn.x+windowIn.width>mat->width)
windowIn.width=mat->width-windowIn.x;
窗高+=2*公差;
if(windowIn.y+windowIn.height>mat->height)
windowIn.height=mat->height-windowIn.y;
cvGetSubRect(mat和cur_win、windowIn);
/*计算新质心中的力矩*/
cvMoments(&cur_-win,&moments);
m00=力矩。m00;
m10=力矩。m10;
m01=力矩。m01;
mu11=力矩。mu11;
mu20=力矩。mu20;
mu02=力矩。mu02;
if(fabs(m00)宽度-xc)*2);
t0=cvRound(晶圆长度*sn));
t1=cvRound(晶圆宽度*cs));
t0=最大值(t0,t1)+2;
组件垂直高度=最小值(t0,(材料->高度-_yc)*2);
组件矩形x=最大值(0,xc-组件矩形宽度/2);
组件校正y=最大值(0,_yc-组件校正高度/2);
comp.rect.width=MIN(材料->宽度-comp.rect.x,comp.rect.width);
comp.rect.height=MIN(材料->高度-comp.rect.y,comp.rect.height);
组件面积=(浮动)m00;
}
如果(_comp)
*_comp=comp;
如果(方框)
{
框->size.height=(浮动)长度;
框->size.width=(浮动)宽度;
长方体->角度=(浮动)((CV_π*0.5+θ)*180./CV_π);
同时(框->角度<0)
框->角度+=360;
同时(框->角度>=360)
框->角度-=360;
如果(框->角度>=180)
框->角度-=180;
框->中心=cvPoint2D32f(复合矩形x+复合矩形宽度*0.5f,
组件矩形y+组件矩形高度*0.5f);
}
返回已使用的ITERS;
}
cvCamShift( const void* imgProb, CvRect windowIn,
            CvTermCriteria criteria,
            CvConnectedComp* _comp,
            CvBox2D* box )
{
    const int TOLERANCE = 10;
    CvMoments moments;
    double m00 = 0, m10, m01, mu20, mu11, mu02, inv_m00;
    double a, b, c, xc, yc;
    double rotate_a, rotate_c;
    double theta = 0, square;
    double cs, sn;
    double length = 0, width = 0;
    int itersUsed = 0;
    CvConnectedComp comp;
    CvMat  cur_win, stub, *mat = (CvMat*)imgProb;

    comp.rect = windowIn;

    mat = cvGetMat( mat, &stub );

    itersUsed = cvMeanShift( mat, windowIn, criteria, &comp );
    windowIn = comp.rect;

    windowIn.x -= TOLERANCE;
    if( windowIn.x < 0 )
        windowIn.x = 0;

    windowIn.y -= TOLERANCE;
    if( windowIn.y < 0 )
        windowIn.y = 0;

    windowIn.width += 2 * TOLERANCE;
    if( windowIn.x + windowIn.width > mat->width )
        windowIn.width = mat->width - windowIn.x;

    windowIn.height += 2 * TOLERANCE;
    if( windowIn.y + windowIn.height > mat->height )
        windowIn.height = mat->height - windowIn.y;

    cvGetSubRect( mat, &cur_win, windowIn );

    /* Calculating moments in new center mass */
    cvMoments( &cur_win, &moments );

    m00 = moments.m00;
    m10 = moments.m10;
    m01 = moments.m01;
    mu11 = moments.mu11;
    mu20 = moments.mu20;
    mu02 = moments.mu02;

    if( fabs(m00) < DBL_EPSILON )
        return -1;

    inv_m00 = 1. / m00;
    xc = cvRound( m10 * inv_m00 + windowIn.x );
    yc = cvRound( m01 * inv_m00 + windowIn.y );
    a = mu20 * inv_m00;
    b = mu11 * inv_m00;
    c = mu02 * inv_m00;

    /* Calculating width & height */
    square = sqrt( 4 * b * b + (a - c) * (a - c) );

    /* Calculating orientation */
    theta = atan2( 2 * b, a - c + square );

    /* Calculating width & length of figure */
    cs = cos( theta );
    sn = sin( theta );

    rotate_a = cs * cs * mu20 + 2 * cs * sn * mu11 + sn * sn * mu02;
    rotate_c = sn * sn * mu20 - 2 * cs * sn * mu11 + cs * cs * mu02;
    length = sqrt( rotate_a * inv_m00 ) * 4;
    width = sqrt( rotate_c * inv_m00 ) * 4;

    /* In case, when tetta is 0 or 1.57... the Length & Width may be exchanged */
    if( length < width )
    {
        double t;

        CV_SWAP( length, width, t );
        CV_SWAP( cs, sn, t );
        theta = CV_PI*0.5 - theta;
    }

    /* Saving results */
    if( _comp || box )
    {
        int t0, t1;
        int _xc = cvRound( xc );
        int _yc = cvRound( yc );

        t0 = cvRound( fabs( length * cs ));
        t1 = cvRound( fabs( width * sn ));

        t0 = MAX( t0, t1 ) + 2;
        comp.rect.width = MIN( t0, (mat->width - _xc) * 2 );

        t0 = cvRound( fabs( length * sn ));
        t1 = cvRound( fabs( width * cs ));

        t0 = MAX( t0, t1 ) + 2;
        comp.rect.height = MIN( t0, (mat->height - _yc) * 2 );

        comp.rect.x = MAX( 0, _xc - comp.rect.width / 2 );
        comp.rect.y = MAX( 0, _yc - comp.rect.height / 2 );

        comp.rect.width = MIN( mat->width - comp.rect.x, comp.rect.width );
        comp.rect.height = MIN( mat->height - comp.rect.y, comp.rect.height );
        comp.area = (float) m00;
    }

    if( _comp )
        *_comp = comp;

    if( box )
    {
        box->size.height = (float)length;
        box->size.width = (float)width;
        box->angle = (float)((CV_PI*0.5+theta)*180./CV_PI);
        while(box->angle < 0)
            box->angle += 360;
        while(box->angle >= 360)
            box->angle -= 360;
        if(box->angle >= 180)
            box->angle -= 180;
        box->center = cvPoint2D32f( comp.rect.x + comp.rect.width*0.5f,
                                    comp.rect.y + comp.rect.height*0.5f);
    }

    return itersUsed;
}