C#值比较

C#值比较,c#,floating-point,C#,Floating Point,我比较了两个具有相同值的不同类型的变量 int i = 100; short s = (short)100; if (s == i) { return "Equals"; } else { return "Not Equals"; } float f = 100.5f; double d = 100.5d; if (d == f) { return "Equals"; } else { return "Not Equals"; } 第一个比较输出为“相等” 第二个比较

我比较了两个具有相同值的不同类型的变量

int i = 100;
short s = (short)100;

if (s == i)
{
   return "Equals";
}
else
{
  return "Not Equals";
}

float f = 100.5f;
double d = 100.5d;

if (d == f)
{
   return "Equals";
}
else
{
  return "Not Equals";
}
第一个比较输出为“相等” 第二个比较输出“不相等”

我的问题是 short和int的相同值相等的程度, 如果它等于,那么为什么float和double的值不相等呢


这不仅适用于float和double,如果我们比较decimal,它将显示编译器错误。

您的输出是错误的。在上面提到的查询中,float和double值是相等的。当您运行上述程序时,它将打印两次“等于”


您应该再次检查程序输出。

int和
short
相等,因为将
short
升级为
int
不会改变其值。
float
double
不相等的原因是它们的值略有不同
Equal
比较
double
s和
float
s会产生这类问题

Microsoft.NET Framework源代码有一个很好的实用程序,专门用于解决这类问题。这些实用程序尝试允许您对
float
s和
double
s进行相等(或接近相等)的比较

//---------------------------------------------------------------------------- 
//
// Copyright (C) Microsoft Corporation.  All rights reserved.
//
// File: DoubleUtil.cs 
//
// Description: This file contains the implementation of DoubleUtil, which 
//              provides "fuzzy" comparison functionality for doubles and 
//              double-based classes and structs in our code.
// 
// History:
//  04/28/2003 : [....] - Created
//  05/20/2003 : [....] - Moved it to Shared, so Base, Core and Framework can all share.
// 
//---------------------------------------------------------------------------

using System; 
using System.Windows;
using System.Runtime.InteropServices; 

namespace Util
{ 
    public static class DoubleUtil 
    {
        // Const values come from sdk\inc\crt\float.h
        internal const double DBL_EPSILON  =   2.2204460492503131e-016; /* smallest such that 1.0+DBL_EPSILON != 1.0 */
        internal const float  FLT_MIN      =   1.175494351e-38F; /* Number close to zero, where float.MinValue is -float.MaxValue */ 

        /// <summary> 
        /// AreClose - Returns whether or not two doubles are "close".  That is, whether or 
        /// not they are within epsilon of each other.  Note that this epsilon is proportional
        /// to the numbers themselves to that AreClose survives scalar multiplication. 
        /// There are plenty of ways for this to return false even for numbers which
        /// are theoretically identical, so no code calling this should fail to work if this
        /// returns false.  This is important enough to repeat:
        /// NB: NO CODE CALLING THIS FUNCTION SHOULD DEPEND ON ACCURATE RESULTS - this should be 
        /// used for optimizations *only*.
        /// </summary> 
        /// <returns> 
        /// bool - the result of the AreClose comparision.
        /// </returns> 
        /// <param name="value1"> The first double to compare. </param>
        /// <param name="value2"> The second double to compare. </param>
        public static bool AreClose(double value1, double value2)
        { 
            //in case they are Infinities (then epsilon check does not work)
            if(value1 == value2) return true; 
            // This computes (|value1-value2| / (|value1| + |value2| + 10.0)) < DBL_EPSILON 
            double eps = (Math.Abs(value1) + Math.Abs(value2) + 10.0) * DBL_EPSILON;
            double delta = value1 - value2; 
            return(-eps < delta) && (eps > delta);
        }

        /// <summary> 
        /// LessThan - Returns whether or not the first double is less than the second double.
        /// That is, whether or not the first is strictly less than *and* not within epsilon of 
        /// the other number.  Note that this epsilon is proportional to the numbers themselves 
        /// to that AreClose survives scalar multiplication.  Note,
        /// There are plenty of ways for this to return false even for numbers which 
        /// are theoretically identical, so no code calling this should fail to work if this
        /// returns false.  This is important enough to repeat:
        /// NB: NO CODE CALLING THIS FUNCTION SHOULD DEPEND ON ACCURATE RESULTS - this should be
        /// used for optimizations *only*. 
        /// </summary>
        /// <returns> 
        /// bool - the result of the LessThan comparision. 
        /// </returns>
        /// <param name="value1"> The first double to compare. </param> 
        /// <param name="value2"> The second double to compare. </param>
        public static bool LessThan(double value1, double value2)
        {
            return (value1 < value2) && !AreClose(value1, value2); 
        }


        /// <summary>
        /// GreaterThan - Returns whether or not the first double is greater than the second double. 
        /// That is, whether or not the first is strictly greater than *and* not within epsilon of
        /// the other number.  Note that this epsilon is proportional to the numbers themselves
        /// to that AreClose survives scalar multiplication.  Note,
        /// There are plenty of ways for this to return false even for numbers which 
        /// are theoretically identical, so no code calling this should fail to work if this
        /// returns false.  This is important enough to repeat: 
        /// NB: NO CODE CALLING THIS FUNCTION SHOULD DEPEND ON ACCURATE RESULTS - this should be 
        /// used for optimizations *only*.
        /// </summary> 
        /// <returns>
        /// bool - the result of the GreaterThan comparision.
        /// </returns>
        /// <param name="value1"> The first double to compare. </param> 
        /// <param name="value2"> The second double to compare. </param>
        public static bool GreaterThan(double value1, double value2) 
        { 
            return (value1 > value2) && !AreClose(value1, value2);
        } 

        /// <summary>
        /// LessThanOrClose - Returns whether or not the first double is less than or close to
        /// the second double.  That is, whether or not the first is strictly less than or within 
        /// epsilon of the other number.  Note that this epsilon is proportional to the numbers
        /// themselves to that AreClose survives scalar multiplication.  Note, 
        /// There are plenty of ways for this to return false even for numbers which 
        /// are theoretically identical, so no code calling this should fail to work if this
        /// returns false.  This is important enough to repeat: 
        /// NB: NO CODE CALLING THIS FUNCTION SHOULD DEPEND ON ACCURATE RESULTS - this should be
        /// used for optimizations *only*.
        /// </summary>
        /// <returns> 
        /// bool - the result of the LessThanOrClose comparision.
        /// </returns> 
        /// <param name="value1"> The first double to compare. </param> 
        /// <param name="value2"> The second double to compare. </param>
        public static bool LessThanOrClose(double value1, double value2) 
        {
            return (value1 < value2) || AreClose(value1, value2);
        }

        /// <summary>
        /// GreaterThanOrClose - Returns whether or not the first double is greater than or close to 
        /// the second double.  That is, whether or not the first is strictly greater than or within 
        /// epsilon of the other number.  Note that this epsilon is proportional to the numbers
        /// themselves to that AreClose survives scalar multiplication.  Note, 
        /// There are plenty of ways for this to return false even for numbers which
        /// are theoretically identical, so no code calling this should fail to work if this
        /// returns false.  This is important enough to repeat:
        /// NB: NO CODE CALLING THIS FUNCTION SHOULD DEPEND ON ACCURATE RESULTS - this should be 
        /// used for optimizations *only*.
        /// </summary> 
        /// <returns> 
        /// bool - the result of the GreaterThanOrClose comparision.
        /// </returns> 
        /// <param name="value1"> The first double to compare. </param>
        /// <param name="value2"> The second double to compare. </param>
        public static bool GreaterThanOrClose(double value1, double value2)
        { 
            return (value1 > value2) || AreClose(value1, value2);
        } 

        /// <summary>
        /// IsOne - Returns whether or not the double is "close" to 1.  Same as AreClose(double, 1), 
        /// but this is faster.
        /// </summary>
        /// <returns>
        /// bool - the result of the AreClose comparision. 
        /// </returns>
        /// <param name="value"> The double to compare to 1. </param> 
        public static bool IsOne(double value) 
        {
            return Math.Abs(value-1.0) < 10.0 * DBL_EPSILON; 
        }

        /// <summary>
        /// IsZero - Returns whether or not the double is "close" to 0.  Same as AreClose(double, 0), 
        /// but this is faster.
        /// </summary> 
        /// <returns> 
        /// bool - the result of the AreClose comparision.
        /// </returns> 
        /// <param name="value"> The double to compare to 0. </param>
        public static bool IsZero(double value)
        {
            return Math.Abs(value) < 10.0 * DBL_EPSILON; 
        }

        // The Point, Size, Rect and Matrix class have moved to WinCorLib.  However, we provide 
        // internal AreClose methods for our own use here.

        /// <summary>
        /// Compares two points for fuzzy equality.  This function
        /// helps compensate for the fact that double values can
        /// acquire error when operated upon 
        /// </summary>
        /// <param name='point1'>The first point to compare</param> 
        /// <param name='point2'>The second point to compare</param> 
        /// <returns>Whether or not the two points are equal</returns>
        public static bool AreClose(Point point1, Point point2) 
        {
            return DoubleUtil.AreClose(point1.X, point2.X) &&
            DoubleUtil.AreClose(point1.Y, point2.Y);
        } 

        /// <summary> 
        /// Compares two Size instances for fuzzy equality.  This function 
        /// helps compensate for the fact that double values can
        /// acquire error when operated upon 
        /// </summary>
        /// <param name='size1'>The first size to compare</param>
        /// <param name='size2'>The second size to compare</param>
        /// <returns>Whether or not the two Size instances are equal</returns> 
        public static bool AreClose(Size size1, Size size2)
        { 
            return DoubleUtil.AreClose(size1.Width, size2.Width) && 
                   DoubleUtil.AreClose(size1.Height, size2.Height);
        } 

        /// <summary>
        /// Compares two Vector instances for fuzzy equality.  This function
        /// helps compensate for the fact that double values can 
        /// acquire error when operated upon
        /// </summary> 
        /// <param name='vector1'>The first Vector to compare</param> 
        /// <param name='vector2'>The second Vector to compare</param>
        /// <returns>Whether or not the two Vector instances are equal</returns> 
        public static bool AreClose(System.Windows.Vector vector1, System.Windows.Vector vector2)
        {
            return DoubleUtil.AreClose(vector1.X, vector2.X) &&
                   DoubleUtil.AreClose(vector1.Y, vector2.Y); 
        }

        /// <summary> 
        /// Compares two rectangles for fuzzy equality.  This function
        /// helps compensate for the fact that double values can 
        /// acquire error when operated upon
        /// </summary>
        /// <param name='rect1'>The first rectangle to compare</param>
        /// <param name='rect2'>The second rectangle to compare</param> 
        /// <returns>Whether or not the two rectangles are equal</returns>
        public static bool AreClose(Rect rect1, Rect rect2) 
        { 
            // If they're both empty, don't bother with the double logic.
            if (rect1.IsEmpty) 
            {
                return rect2.IsEmpty;
            }

            // At this point, rect1 isn't empty, so the first thing we can test is
            // rect2.IsEmpty, followed by property-wise compares. 

            return (!rect2.IsEmpty) &&
                DoubleUtil.AreClose(rect1.X, rect2.X) && 
                DoubleUtil.AreClose(rect1.Y, rect2.Y) &&
                DoubleUtil.AreClose(rect1.Height, rect2.Height) &&
                DoubleUtil.AreClose(rect1.Width, rect2.Width);
        } 

        /// <summary> 
        /// 
        /// </summary>
        /// <param name="val"></param> 
        /// <returns></returns>
        public static bool IsBetweenZeroAndOne(double val)
        {
            return (GreaterThanOrClose(val, 0) && LessThanOrClose(val, 1)); 
        }

        /// <summary> 
        ///
        /// </summary> 
        /// <param name="val"></param>
        /// <returns></returns>
        public static int DoubleToInt(double val)
        { 
            return (0 < val) ? (int)(val + 0.5) : (int)(val - 0.5);
        } 


        /// <summary> 
        /// rectHasNaN - this returns true if this rect has X, Y , Height or Width as NaN.
        /// </summary>
        /// <param name='r'>The rectangle to test</param>
        /// <returns>returns whether the Rect has NaN</returns> 
        public static bool RectHasNaN(Rect r)
        { 
            if (    DoubleUtil.IsNaN(r.X) 
                 || DoubleUtil.IsNaN(r.Y)
                 || DoubleUtil.IsNaN(r.Height) 
                 || DoubleUtil.IsNaN(r.Width) )
            {
                return true;
            } 
            return false;
        } 


#if !PBTCOMPILER 

        [StructLayout(LayoutKind.Explicit)]
        private struct NanUnion
        { 
            [FieldOffset(0)] internal double DoubleValue;
            [FieldOffset(0)] internal UInt64 UintValue; 
        } 

        // The standard CLR double.IsNaN() function is approximately 100 times slower than our own wrapper, 
        // so please make sure to use DoubleUtil.IsNaN() in performance sensitive code.
        // PS item that tracks the CLR improvement is DevDiv Schedule : 26916.
        // IEEE 754 : If the argument is any value in the range 0x7ff0000000000001L through 0x7fffffffffffffffL
        // or in the range 0xfff0000000000001L through 0xffffffffffffffffL, the result will be NaN. 
        public static bool IsNaN(double value)
        { 
            NanUnion t = new NanUnion(); 
            t.DoubleValue = value;

            UInt64 exp = t.UintValue & 0xfff0000000000000;
            UInt64 man = t.UintValue & 0x000fffffffffffff;

            return (exp == 0x7ff0000000000000 || exp == 0xfff0000000000000) && (man != 0); 
        }
#endif 
    } 
}

// File provided for Reference Use Only by Microsoft Corporation (c) 2007.
// Copyright (c) Microsoft Corporation. All rights reserved.
/--------------------------------------------------------------
//
//版权所有(C)微软公司。版权所有。
//
//文件:DoubleUtil.cs
//
//描述:此文件包含DoubleUtil的实现,它
//为双打和双打提供“模糊”比较功能
//在我们的代码中有基于双的类和结构。
// 
//历史:
//2003年4月28日:[……]-已创建
//2003年5月20日:[…]-将其移动到共享,以便基础、核心和框架都可以共享。
// 
//---------------------------------------------------------------------------
使用制度;
使用System.Windows;
使用System.Runtime.InteropServices;
命名空间Util
{ 
公共静态类DoubleUtil
{
//常量值来自sdk\inc\crt\float.h
内部常数double DBL_EPSILON=2.2204460492503131e-016;/*最小值为1.0+DBL_EPSILON!=1.0*/
内部常数float FLT_MIN=1.175494351e-38F;/*接近零的数字,其中float.MinValue为-float.MaxValue*/
///  
///AreClose-返回两个双精度是否为“close”。即,是否
///不是,它们彼此在ε范围内。注意,这个ε是成比例的
///对于数字本身来说,AreClose在标量乘法中幸存。
///有很多方法可以让它返回false,即使对于
///理论上是相同的,因此如果
///返回false。这非常重要,可以重复:
///注意:调用此函数的代码不应依赖于准确的结果-这应该是
///仅用于优化*。
///  
///  
///bool——比较的结果。
///  
///要比较的第一双。
///第二个要比较。
公共静态布尔值关闭(双值1,双值2)
{ 
//如果它们是无穷大(那么ε检查不起作用)
如果(value1==value2)返回true;
//这将计算(| value1-value2 |/(| value1 |+| value2 |+10.0))delta);
}
///  
///LessThan-返回第一个双精度值是否小于第二个双精度值。
///也就是说,第一个是否严格小于*且*不在ε范围内
///另一个数字。注意这个ε与数字本身成正比
///阿雷克洛斯在标量乘法中幸存了下来。注意,
///有很多方法可以让它返回false,即使对于
///理论上是相同的,因此如果
///返回false。这非常重要,可以重复:
///注意:调用此函数的代码不应依赖于准确的结果-这应该是
///仅用于优化*。
/// 
///  
///bool-比较结果较少。
/// 
///要比较的第一双。
///第二个要比较。
公共静态布尔值小于(双值1,双值2)
{
返回值(value1value2)&&!AreClose(value1,value2);
} 
/// 
///LessThanOrClose-返回第一个double是否小于或接近
///第二个双人