Warning: file_get_contents(/data/phpspider/zhask/data//catemap/9/java/341.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
如何在Java中实现树数据结构?_Java_Data Structures_Tree - Fatal编程技术网

如何在Java中实现树数据结构?

如何在Java中实现树数据结构?,java,data-structures,tree,Java,Data Structures,Tree,有没有标准的Java库类来表示Java中的树 具体而言,我需要代表以下内容: 任何节点上的子树都可以有任意数量的子树 每个节点(根之后)及其子节点都有字符串值 我需要获取给定节点的所有子节点(某种类型的字符串列表或数组)及其字符串值(即,将节点作为输入并返回子节点的所有字符串值作为输出的方法) 是否有任何可用的结构,或者我是否需要创建自己的结构(如果有,实施建议会很好)。此处: public class Tree<T> { private Node<T> ro

有没有标准的Java库类来表示Java中的树

具体而言,我需要代表以下内容:

  • 任何节点上的子树都可以有任意数量的子树
  • 每个节点(根之后)及其子节点都有字符串值
  • 我需要获取给定节点的所有子节点(某种类型的字符串列表或数组)及其字符串值(即,将节点作为输入并返回子节点的所有字符串值作为输出的方法)
是否有任何可用的结构,或者我是否需要创建自己的结构(如果有,实施建议会很好)。

此处:

public class Tree<T> {
    private Node<T> root;

    public Tree(T rootData) {
        root = new Node<T>();
        root.data = rootData;
        root.children = new ArrayList<Node<T>>();
    }

    public static class Node<T> {
        private T data;
        private Node<T> parent;
        private List<Node<T>> children;
    }
}
公共类树{
私有节点根;
公共树(T根数据){
根=新节点();
root.data=rootData;
root.children=new ArrayList();
}
公共静态类节点{
私有T数据;
私有节点父节点;
私人名单儿童;
}
}
这是一个基本的树结构,可用于
String
或任何其他对象。实现简单的树来做您需要的事情是相当容易的


您需要添加的只是用于添加到、从、遍历和构造函数的方法。
节点
树的基本构建块

实际上JDK中实现了一个非常好的树结构

看一看,然后。它们设计用于
JTreePanel
,但事实上,它们是一个非常好的树实现,没有任何东西可以阻止您在没有swing接口的情况下使用它

请注意,从Java 9开始,您可能不希望使用这些类,因为它们不会出现在。

公共类树中{
private List leaves=new LinkedList();
私有树父级=null;
私有字符串数据;
公共树(字符串数据,树父级){
这个数据=数据;
this.parent=parent;
}
}

显然,您可以添加实用方法来添加/删除子项。

与Gareth的答案相同,请检查。它不是通用的,但在其他方面似乎符合要求。即使它在javax.swing包中,它也不依赖于任何AWT或swing类。事实上,源代码实际上有这样一个注释:
//问题:这个类不依赖于AWT中的任何东西——移动到java.util?

这个呢

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;

/**
  * @author ycoppel@google.com (Yohann Coppel)
  * 
  * @param <T>
  *          Object's type in the tree.
*/
public class Tree<T> {

  private T head;

  private ArrayList<Tree<T>> leafs = new ArrayList<Tree<T>>();

  private Tree<T> parent = null;

  private HashMap<T, Tree<T>> locate = new HashMap<T, Tree<T>>();

  public Tree(T head) {
    this.head = head;
    locate.put(head, this);
  }

  public void addLeaf(T root, T leaf) {
    if (locate.containsKey(root)) {
      locate.get(root).addLeaf(leaf);
    } else {
      addLeaf(root).addLeaf(leaf);
    }
  }

  public Tree<T> addLeaf(T leaf) {
    Tree<T> t = new Tree<T>(leaf);
    leafs.add(t);
    t.parent = this;
    t.locate = this.locate;
    locate.put(leaf, t);
    return t;
  }

  public Tree<T> setAsParent(T parentRoot) {
    Tree<T> t = new Tree<T>(parentRoot);
    t.leafs.add(this);
    this.parent = t;
    t.locate = this.locate;
    t.locate.put(head, this);
    t.locate.put(parentRoot, t);
    return t;
  }

  public T getHead() {
    return head;
  }

  public Tree<T> getTree(T element) {
    return locate.get(element);
  }

  public Tree<T> getParent() {
    return parent;
  }

  public Collection<T> getSuccessors(T root) {
    Collection<T> successors = new ArrayList<T>();
    Tree<T> tree = getTree(root);
    if (null != tree) {
      for (Tree<T> leaf : tree.leafs) {
        successors.add(leaf.head);
      }
    }
    return successors;
  }

  public Collection<Tree<T>> getSubTrees() {
    return leafs;
  }

  public static <T> Collection<T> getSuccessors(T of, Collection<Tree<T>> in) {
    for (Tree<T> tree : in) {
      if (tree.locate.containsKey(of)) {
        return tree.getSuccessors(of);
      }
    }
    return new ArrayList<T>();
  }

  @Override
  public String toString() {
    return printTree(0);
  }

  private static final int indent = 2;

  private String printTree(int increment) {
    String s = "";
    String inc = "";
    for (int i = 0; i < increment; ++i) {
      inc = inc + " ";
    }
    s = inc + head;
    for (Tree<T> child : leafs) {
      s += "\n" + child.printTree(increment + indent);
    }
    return s;
  }
}
import java.util.ArrayList;
导入java.util.Collection;
导入java.util.HashMap;
/**
*@作者ycoppel@google.com(约汉·科佩尔)
* 
*@param
*对象在树中的类型。
*/
公共类树{
私人T型头;
private ArrayList leafs=new ArrayList();
私有树父级=null;
private HashMap locate=new HashMap();
公树(T头){
这个头=头;
定位。放(头,这个);
}
公共void addLeaf(T根,T叶){
if(locate.containsKey(根)){
locate.get(根)、addLeaf(叶);
}否则{
addLeaf(根),addLeaf(叶);
}
}
公共树添加叶(T叶){
树t=新树(叶);
添加(t);
t、 父=此;
t、 locate=this.locate;
定位。放置(叶,t);
返回t;
}
公共树集合(T parentRoot){
树t=新树(父根);
t、 添加(这个);
this.parent=t;
t、 locate=this.locate;
t、 定位。放(头,这个);
t、 locate.put(parentRoot,t);
返回t;
}
公共T getHead(){
回流头;
}
公共树getTree(T元素){
返回locate.get(元素);
}
公共树getParent(){
返回父母;
}
公共集合(T根){
集合继承者=新的ArrayList();
Tree-Tree=getTree(根);
if(null!=树){
for(树叶:Tree.leafs){
添加(叶.头);
}
}
归还继承人;
}
公共集合getSubTrees(){
返叶;
}
公共静态集合(中的T个集合,中的集合){
for(Tree-Tree:in){
if(tree.locate.containsKey(of)){
返回树.getsuccessivers(of);
}
}
返回新的ArrayList();
}
@凌驾
公共字符串toString(){
返回printTree(0);
}
专用静态最终整数缩进=2;
私有字符串打印树(整数增量){
字符串s=“”;
字符串公司=”;
对于(int i=0;i
I一个处理泛型树的小库。它比秋千要轻得多。我也有一个类似的例子。

您可以使用ApacheJMeter中包含的类,它是雅加达项目的一部分

HashTree类包含在org.apache.jorphan.collections包中。尽管此软件包不是在JMeter项目之外发布的,但是您可以很容易地获得它:

1) 下载

2) 创建一个新包

3) 复制到/src/jorphan/org/apache/jorphan/collections/。除Data.java以外的所有文件

4) 另复制/src/jorphan/org/apache/jorphan/util/JOrphanUtils.java


5) HashTree已经可以使用了。

您可以使用Java的任何XML API作为文档和节点。.由于XML是一个带有字符串的树结构

没有任何答案提到过简化但有效的代码,因此它是:

public class TreeNodeArray<T> {
    public T value;
    public final  java.util.List<TreeNodeArray<T>> kids =  new java.util.ArrayList<TreeNodeArray<T>>();
}
公共类treenodearay{
公共价值观;
public final java.util.List kids=new java.util.ArrayList();
}

由于问题要求提供可用的数据结构,因此可以从列表或数组构建树:

Object[] tree = new Object[2];
tree[0] = "Hello";
{
  Object[] subtree = new Object[2];
  subtree[0] = "Goodbye";
  subtree[1] = "";
  tree[1] = subtree;
}

instanceof
可用于确定元素是子树还是终端节点。

另一种树结构:

public class TreeNode<T> implements Iterable<TreeNode<T>> {

    T data;
    TreeNode<T> parent;
    List<TreeNode<T>> children;

    public TreeNode(T data) {
        this.data = data;
        this.children = new LinkedList<TreeNode<T>>();
    }

    public TreeNode<T> addChild(T child) {
        TreeNode<T> childNode = new TreeNode<T>(child);
        childNode.parent = this;
        this.children.add(childNode);
        return childNode;
    }

    // other features ...

}
公共类TreeNode实现Iterable{
T数据;
树状体亲本;
列出儿童名单;
公共树节点(T数据){
这个数据=数据;
this.children=newlinkedlist();
}
公共树节点
public class TreeNode<T> implements Iterable<TreeNode<T>> {

    T data;
    TreeNode<T> parent;
    List<TreeNode<T>> children;

    public TreeNode(T data) {
        this.data = data;
        this.children = new LinkedList<TreeNode<T>>();
    }

    public TreeNode<T> addChild(T child) {
        TreeNode<T> childNode = new TreeNode<T>(child);
        childNode.parent = this;
        this.children.add(childNode);
        return childNode;
    }

    // other features ...

}
TreeNode<String> root = new TreeNode<String>("root");
{
    TreeNode<String> node0 = root.addChild("node0");
    TreeNode<String> node1 = root.addChild("node1");
    TreeNode<String> node2 = root.addChild("node2");
    {
        TreeNode<String> node20 = node2.addChild(null);
        TreeNode<String> node21 = node2.addChild("node21");
        {
            TreeNode<String> node210 = node20.addChild("node210");
        }
    }
}
public interface Tree <N extends Serializable> extends Serializable {
    List<N> getRoots ();
    N getParent (N node);
    List<N> getChildren (N node);
}
public interface MutableTree <N extends Serializable> extends Tree<N> {
    boolean add (N parent, N node);
    boolean remove (N node, boolean cascade);
}
public class FileTree implements Tree<File> {

    @Override
    public List<File> getRoots() {
        return Arrays.stream(File.listRoots()).collect(Collectors.toList());
    }

    @Override
    public File getParent(File node) {
        return node.getParentFile();
    }

    @Override
    public List<File> getChildren(File node) {
        if (node.isDirectory()) {
            File[] children = node.listFiles();
            if (children != null) {
                return Arrays.stream(children).collect(Collectors.toList());
            }
        }
        return Collections.emptyList();
    }
}
public class MappedTreeStructure<N extends Serializable> implements MutableTree<N> {

    public static void main(String[] args) {

        MutableTree<String> tree = new MappedTreeStructure<>();
        tree.add("A", "B");
        tree.add("A", "C");
        tree.add("C", "D");
        tree.add("E", "A");
        System.out.println(tree);
    }

    private final Map<N, N> nodeParent = new HashMap<>();
    private final LinkedHashSet<N> nodeList = new LinkedHashSet<>();

    private void checkNotNull(N node, String parameterName) {
        if (node == null)
            throw new IllegalArgumentException(parameterName + " must not be null");
    }

    @Override
    public boolean add(N parent, N node) {
        checkNotNull(parent, "parent");
        checkNotNull(node, "node");

        // check for cycles
        N current = parent;
        do {
            if (node.equals(current)) {
                throw new IllegalArgumentException(" node must not be the same or an ancestor of the parent");
            }
        } while ((current = getParent(current)) != null);

        boolean added = nodeList.add(node);
        nodeList.add(parent);
        nodeParent.put(node, parent);
        return added;
    }

    @Override
    public boolean remove(N node, boolean cascade) {
        checkNotNull(node, "node");

        if (!nodeList.contains(node)) {
            return false;
        }
        if (cascade) {
            for (N child : getChildren(node)) {
                remove(child, true);
            }
        } else {
            for (N child : getChildren(node)) {
                nodeParent.remove(child);
            }
        }
        nodeList.remove(node);
        return true;
    }

    @Override
    public List<N> getRoots() {
        return getChildren(null);
    }

    @Override
    public N getParent(N node) {
        checkNotNull(node, "node");
        return nodeParent.get(node);
    }

    @Override
    public List<N> getChildren(N node) {
        List<N> children = new LinkedList<>();
        for (N n : nodeList) {
            N parent = nodeParent.get(n);
            if (node == null && parent == null) {
                children.add(n);
            } else if (node != null && parent != null && parent.equals(node)) {
                children.add(n);
            }
        }
        return children;
    }

    @Override
    public String toString() {
        StringBuilder builder = new StringBuilder();
        dumpNodeStructure(builder, null, "- ");
        return builder.toString();
    }

    private void dumpNodeStructure(StringBuilder builder, N node, String prefix) {
        if (node != null) {
            builder.append(prefix);
            builder.append(node.toString());
            builder.append('\n');
            prefix = "  " + prefix;
        }
        for (N child : getChildren(node)) {
            dumpNodeStructure(builder, child, prefix);
        }
    }
}
import java.util.ArrayList;
import java.util.List;



/**
 * 
 * @author X2
 *
 * @param <T>
 */
public class HisTree<T> 
{
    private Node<T> root;

    public HisTree(T rootData) 
    {
        root = new Node<T>();
        root.setData(rootData);
        root.setChildren(new ArrayList<Node<T>>());
    }

}

class Node<T> 
{

    private T data;
    private Node<T> parent;
    private List<Node<T>> children;

    public T getData() {
        return data;
    }
    public void setData(T data) {
        this.data = data;
    }
    public Node<T> getParent() {
        return parent;
    }
    public void setParent(Node<T> parent) {
        this.parent = parent;
    }
    public List<Node<T>> getChildren() {
        return children;
    }
    public void setChildren(List<Node<T>> children) {
        this.children = children;
    }
}
class Node {

    int data;
    Node left;
    Node right;

    public Node(int ddata, Node left, Node right) {
        this.data = ddata;
        this.left = null;
        this.right = null;      
    }

    public void displayNode(Node n) {
        System.out.print(n.data + " "); 
    }

}

class BinaryTree {

    Node root;

    public BinaryTree() {
        this.root = null;
    }

    public void insertLeft(int parent, int leftvalue ) {
        Node n = find(root, parent);
        Node leftchild = new Node(leftvalue, null, null);
        n.left = leftchild;
    }

    public void insertRight(int parent, int rightvalue) {
        Node n = find(root, parent);
        Node rightchild = new Node(rightvalue, null, null);
        n.right = rightchild;
    }

    public void insertRoot(int data) {
        root = new Node(data, null, null);
    }

    public Node getRoot() {
        return root;
    }

    public Node find(Node n, int key) {     
        Node result = null;

        if (n == null)
            return null;

        if (n.data == key)
            return n;

        if (n.left != null)
            result = find(n.left, key);

        if (result == null)
            result = find(n.right, key);

        return result;
    } 

    public int getheight(Node root){
        if (root == null)
            return 0;

        return Math.max(getheight(root.left), getheight(root.right)) + 1; 
    }

    public void printTree(Node n) {     
        if (n == null)
            return;

        printTree(n.left);
        n.displayNode(n);
        printTree(n.right);             
    }

}
import com.fasterxml.jackson.annotation.JsonValue;
import com.fasterxml.jackson.databind.ObjectMapper;

import java.util.HashMap;
import java.util.Map;
import java.util.TreeMap;

/**
 * Created by kic on 16.07.15.
 */
public class NestedMap<K, V> {
    private final Map root = new HashMap<>();

    public NestedMap<K, V> put(K key) {
        Object nested = root.get(key);

        if (nested == null || !(nested instanceof NestedMap)) root.put(key, nested = new NestedMap<>());
        return (NestedMap<K, V>) nested;
    }

    public Map.Entry<K,V > put(K key, V value) {
        root.put(key, value);

        return (Map.Entry<K, V>) root.entrySet().stream().filter(e -> ((Map.Entry) e).getKey().equals(key)).findFirst().get();
    }

    public NestedMap<K, V> get(K key) {
        return (NestedMap<K, V>) root.get(key);
    }

    public V getValue(K key) {
        return (V) root.get(key);
    }

    @JsonValue
    public Map getRoot() {
        return root;
    }

    public static void main(String[] args) throws Exception {
        NestedMap<String, Integer> test = new NestedMap<>();
        test.put("a").put("b").put("c", 12);
        Map.Entry<String, Integer> foo = test.put("a").put("b").put("d", 12);
        test.put("b", 14);
        ObjectMapper mapper = new ObjectMapper();
        System.out.println(mapper.writeValueAsString(test));

        foo.setValue(99);
        System.out.println(mapper.writeValueAsString(test));

        System.out.println(test.get("a").get("b").getValue("d"));
    }
}
    // TestTree.java
// A simple test to see how we can build a tree and populate it
//
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.tree.*;

public class TestTree extends JFrame {

  JTree tree;
  DefaultTreeModel treeModel;

  public TestTree( ) {
    super("Tree Test Example");
    setSize(400, 300);
    setDefaultCloseOperation(EXIT_ON_CLOSE);
  }

  public void init( ) {
    // Build up a bunch of TreeNodes. We use DefaultMutableTreeNode because the
    // DefaultTreeModel can use it to build a complete tree.
    DefaultMutableTreeNode root = new DefaultMutableTreeNode("Root");
    DefaultMutableTreeNode subroot = new DefaultMutableTreeNode("SubRoot");
    DefaultMutableTreeNode leaf1 = new DefaultMutableTreeNode("Leaf 1");
    DefaultMutableTreeNode leaf2 = new DefaultMutableTreeNode("Leaf 2");

    // Build our tree model starting at the root node, and then make a JTree out
    // of it.
    treeModel = new DefaultTreeModel(root);
    tree = new JTree(treeModel);

    // Build the tree up from the nodes we created.
    treeModel.insertNodeInto(subroot, root, 0);
    // Or, more succinctly:
    subroot.add(leaf1);
    root.add(leaf2);

    // Display it.
    getContentPane( ).add(tree, BorderLayout.CENTER);
  }

  public static void main(String args[]) {
    TestTree tt = new TestTree( );
    tt.init( );
    tt.setVisible(true);
  }
}
public abstract class Node {
  List<Node> children;

  public List<Node> getChidren() {
    if (children == null) {
      children = new ArrayList<>();
    }
    return chidren;
  }
}
public class MenuItem extends Node {
  String label;
  String href;
  ...
}
TreeSet<String> treeSet = new TreeSet<String>();
Iterator<String> it  = treeSet.Iterator();
while(it.hasNext()){
...
}
/***
/* Within the class that's using a binary tree for any reason. You could 
/* generalize with generics IFF the parent class needs different value types.
 */
private class Node {
  public String value;
  public Node[] nodes; // Or an Iterable<Node> nodes;
}
private class Node { // Using package visibility is an option
  String value;
  Node left;
  Node right;
}
private class Node {
  String value;
  Map<char, Node> nodes;
}
import java.util.Arrays;
import java.util.ArrayList;
import java.util.List;

public class kidsOfMatchTheseDays {
 static private class Node {
   String value;
   Node[] nodes;
 }

 // Pre-order; you didn't specify.
 static public List<String> list(Node node, String find) {
   return list(node, find, new ArrayList<String>(), false);
 }

 static private ArrayList<String> list(
     Node node,
     String find,
     ArrayList<String> list,
     boolean add) {
   if (node == null) {
     return list;
   }
   if (node.value.equals(find)) {
     add = true;
   }
   if (add) {
     list.add(node.value);
   }
   if (node.nodes != null) {
     for (Node child: node.nodes) {
       list(child, find, list, add);
     }
   }
   return list;
 }

 public static final void main(String... args) {
   // Usually never have to do setup like this, so excuse the style
   // And it could be cleaner by adding a constructor like:
   //     Node(String val, Node... children) {
   //         value = val;
   //         nodes = children;
   //     }
   Node tree = new Node();
   tree.value = "root";
   Node[] n = {new Node(), new Node()};
   tree.nodes = n;
   tree.nodes[0].value = "leftish";
   tree.nodes[1].value = "rightish-leafy";
   Node[] nn = {new Node()};
   tree.nodes[0].nodes = nn;
   tree.nodes[0].nodes[0].value = "off-leftish-leaf";
   // Enough setup
   System.out.println(Arrays.toString(list(tree, args[0]).toArray()));
 }
}
$ java kidsOfMatchTheseDays leftish
[leftish, off-leftish-leaf]
$ java kidsOfMatchTheseDays root
[root, leftish, off-leftish-leaf, rightish-leafy]
$ java kidsOfMatchTheseDays rightish-leafy
[rightish-leafy]
$ java kidsOfMatchTheseDays a
[]
import java.util.HashMap;
import java.util.LinkedList;

public class TreeMap<T> extends LinkedHashMap<T, TreeMap<T>> {

    public void put(T[] path) {
        LinkedList<T> list = new LinkedList<>();
        for (T key : path) {
            list.add(key);
        }
        return put(list);
    }

    public void put(LinkedList<T> path) {
        if (path.isEmpty()) {
            return;
        }
        T key = path.removeFirst();
        TreeMap<T> val = get(key);
        if (val == null) {
            val = new TreeMap<>();
            put(key, val);
        }
        val.put(path);
    }

}
root, child 1
root, child 1, child 1a
root, child 1, child 1b
root, child 2
root, child 3, child 3a
TreeMap<String> root = new TreeMap<>();
Scanner scanner = new Scanner(new File("input.txt"));
while (scanner.hasNextLine()) {
  root.put(scanner.nextLine().split(", "));
}