Machine learning ML DecisionTreeClassifier-连续特征

Machine learning ML DecisionTreeClassifier-连续特征,machine-learning,pyspark,decision-tree,Machine Learning,Pyspark,Decision Tree,如何让ml.DecisionTreeClassifier在不必使用Bucketizer或QuantileDiscretizer方法的情况下对连续特征而不是分类特征进行评分 下面是我将连续特性以ML形式传递到DecisionTreeClassifier中的代码,在没有对特性进行装箱(Buckizer)的情况下,大多数评分集将被忽略而不是评分(spark 2.1不支持keep) 对于连续特征,不需要使用Bucketizer或QuantileDiscretizer。对于分类功能,您可以使用String

如何让ml.DecisionTreeClassifier在不必使用Bucketizer或QuantileDiscretizer方法的情况下对连续特征而不是分类特征进行评分

下面是我将连续特性以ML形式传递到DecisionTreeClassifier中的代码,在没有对特性进行装箱(Buckizer)的情况下,大多数评分集将被忽略而不是评分(spark 2.1不支持keep)


对于连续特征,不需要使用Bucketizer或QuantileDiscretizer。对于分类功能,您可以使用StringIndexer和OneHotEncoder,并将其包括在管道中,但对于连续功能,您只需要使用VectorAssembler指定功能,DecisionTreeClassifier将自动将功能装箱

所以代码看起来像:

from pyspark.mllib.linalg import Vectors
from pyspark.ml import Pipeline
from pyspark.sql import Row, SparkSession, SQLContext
from pyspark.sql.types import StringType, DoubleType 
from pyspark.ml.feature import StringIndexer, VectorAssembler, OneHotEncoder
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark import SparkConf, SparkContext
from pyspark.sql.functions import udf

# Load the training set that is in parquet format into a data frame
train_df = sqlContext.read.parquet("/data/training_set")

# convert data types to double
train_df.withColumn("income", train_df["income"].cast(DoubleType())
train_df.withColumn("age", train_df["age"].cast(DoubleType())

# StringIndexer - Target
# First we will StringIndexer to get numeric categorical features
indexer1 = StringIndexer(inputCol="target", outputCol="target_numeric", handleInvalid="skip")

# Create distinct StringIndexer transformers with the outputCol
# parameter set to be the name of the input column appended 
indexedcols = [
"income",
"age"
]

# FEATURES need to be in a Vector which is why this is converted using a VectorAssembler
# The VectorAssember is going to take as input our index columns and our output will be the features.
# Create a VectorAssembler transformer to combine all of the indexed
# categorical features into a vector. Provide the "indexedcols" list
# created above as the inputCols parameter, and name the outputCol "features".
va = VectorAssembler(inputCols = indexedcols, outputCol = 'features')

# Create a DecisionTreeClassifier, setting the label column to your
# indexed label column ("label_ix") and the features column to the
# newly created column from the VectorAssembler above ("features").
# Store the new StringIndexer transformers, the VectorAssembler,
# as well as the DecisionTreeClassifier in a list called "steps"
clf = DecisionTreeClassifier(labelCol="target_numeric", impurity="gini",  maxBins=32, maxMemoryInMB=1024)

#  Create steps for transform for the ml pipeline
steps = [indexer1, 
        va, clf]

# Create a ML pipeline named "pl" using the steps list to set the stages parameter
pl = Pipeline(stages=steps)

# Run the fit method of the pipeline on the DataFrame
# model in a new variable called "plmodel"
plmodel = pl.fit(train_df)

######################################################################################
# Scoring Set
######################################################################################

# Now get the data you want to run the model against 
scoring_df = sqlContext.read.parquet("/data/scoring_set")

# convert data types to double
scoring_df.withColumn("income", scoring_df["income"].cast(DoubleType())
scoring_df.withColumn("age", scoring_df["age"].cast(DoubleType())

# Run the transform method of the pipeline model created above
# on the "test_df" DataFrame to create a new DataFrame called "predictions"
#
# skip past any labels that are not in the training set.  If you don't skip then errors will be produced 
#saying unseen label:40 which means the scoring set has a new element that did not exist in the training set for the feature.
predictions = plmodel.transform(scoring_DF)

vector_udf1 = udf(lambda vector: float(vector[1]))
vector_udf0 = udf(lambda vector: float(vector[0]))

# Save dataframe to hdfs
outputDF = predictions.select("age", \
"income", \
"prediction", \
vector_udf1("probability").alias("probability0")), \
vector_udf1("probability").alias("probability1")).write.format("parquet").mode("overwrite").save("/data/algo_scored")

对于连续特征,不需要使用Bucketizer或QuantileDiscretizer。对于分类功能,您可以使用StringIndexer和OneHotEncoder,并将其包括在管道中,但对于连续功能,您只需要使用VectorAssembler指定功能,DecisionTreeClassifier将自动将功能装箱

所以代码看起来像:

from pyspark.mllib.linalg import Vectors
from pyspark.ml import Pipeline
from pyspark.sql import Row, SparkSession, SQLContext
from pyspark.sql.types import StringType, DoubleType 
from pyspark.ml.feature import StringIndexer, VectorAssembler, OneHotEncoder
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark import SparkConf, SparkContext
from pyspark.sql.functions import udf

# Load the training set that is in parquet format into a data frame
train_df = sqlContext.read.parquet("/data/training_set")

# convert data types to double
train_df.withColumn("income", train_df["income"].cast(DoubleType())
train_df.withColumn("age", train_df["age"].cast(DoubleType())

# StringIndexer - Target
# First we will StringIndexer to get numeric categorical features
indexer1 = StringIndexer(inputCol="target", outputCol="target_numeric", handleInvalid="skip")

# Create distinct StringIndexer transformers with the outputCol
# parameter set to be the name of the input column appended 
indexedcols = [
"income",
"age"
]

# FEATURES need to be in a Vector which is why this is converted using a VectorAssembler
# The VectorAssember is going to take as input our index columns and our output will be the features.
# Create a VectorAssembler transformer to combine all of the indexed
# categorical features into a vector. Provide the "indexedcols" list
# created above as the inputCols parameter, and name the outputCol "features".
va = VectorAssembler(inputCols = indexedcols, outputCol = 'features')

# Create a DecisionTreeClassifier, setting the label column to your
# indexed label column ("label_ix") and the features column to the
# newly created column from the VectorAssembler above ("features").
# Store the new StringIndexer transformers, the VectorAssembler,
# as well as the DecisionTreeClassifier in a list called "steps"
clf = DecisionTreeClassifier(labelCol="target_numeric", impurity="gini",  maxBins=32, maxMemoryInMB=1024)

#  Create steps for transform for the ml pipeline
steps = [indexer1, 
        va, clf]

# Create a ML pipeline named "pl" using the steps list to set the stages parameter
pl = Pipeline(stages=steps)

# Run the fit method of the pipeline on the DataFrame
# model in a new variable called "plmodel"
plmodel = pl.fit(train_df)

######################################################################################
# Scoring Set
######################################################################################

# Now get the data you want to run the model against 
scoring_df = sqlContext.read.parquet("/data/scoring_set")

# convert data types to double
scoring_df.withColumn("income", scoring_df["income"].cast(DoubleType())
scoring_df.withColumn("age", scoring_df["age"].cast(DoubleType())

# Run the transform method of the pipeline model created above
# on the "test_df" DataFrame to create a new DataFrame called "predictions"
#
# skip past any labels that are not in the training set.  If you don't skip then errors will be produced 
#saying unseen label:40 which means the scoring set has a new element that did not exist in the training set for the feature.
predictions = plmodel.transform(scoring_DF)

vector_udf1 = udf(lambda vector: float(vector[1]))
vector_udf0 = udf(lambda vector: float(vector[0]))

# Save dataframe to hdfs
outputDF = predictions.select("age", \
"income", \
"prediction", \
vector_udf1("probability").alias("probability0")), \
vector_udf1("probability").alias("probability1")).write.format("parquet").mode("overwrite").save("/data/algo_scored")