Warning: file_get_contents(/data/phpspider/zhask/data//catemap/7/math/3.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
Math 如何计算具有对偶变量的估计量的标准误差_Math_Statistics_Montecarlo_Quantitative Finance - Fatal编程技术网

Math 如何计算具有对偶变量的估计量的标准误差

Math 如何计算具有对偶变量的估计量的标准误差,math,statistics,montecarlo,quantitative-finance,Math,Statistics,Montecarlo,Quantitative Finance,我用朗斯塔夫和施瓦茨最小二乘法为美式期权定价 在使用以下Python代码时,我得到的价格和标准错误与模拟评估美式期权的价格和标准错误几乎相同: Longstaff和Schwartz(2001)提出的简单最小二乘法: 然后,我尝试实现Glasserman提出的对偶变量价格,以及Boyle和Glasserman提出的标准误差: 对偶变量的价格接近Longstaff和Schwartz论文中的价格,但标准误差似乎太小,因为它们比控制变量减少了更多的方差,并且在随机数生成中匹配了两个矩。我认为这个问题属于

我用朗斯塔夫和施瓦茨最小二乘法为美式期权定价

在使用以下Python代码时,我得到的价格和标准错误与模拟评估美式期权的价格和标准错误几乎相同: Longstaff和Schwartz(2001)提出的简单最小二乘法:

然后,我尝试实现Glasserman提出的对偶变量价格,以及Boyle和Glasserman提出的标准误差:


对偶变量的价格接近Longstaff和Schwartz论文中的价格,但标准误差似乎太小,因为它们比控制变量减少了更多的方差,并且在随机数生成中匹配了两个矩。

我认为这个问题属于交叉验证,而不是交叉验证@GuedesBF谢谢:-)
import numpy as np
import numpy.random as npr
import warnings
warnings.simplefilter('ignore')
from numpy.polynomial.laguerre import lagfit, lagval

# Same parameters as in the original paper
class par: pass
par.S0 = 36
par.K = 40
par.r = 0.06
par.sigma = 0.2
par.T = 1.0
par.I = 100000
par.M = 50

def gen_sn(par,anti_path):
    ''' Function to generate random numbers for simulation.
    Parameters
    ==========
    M : int
    number of time intervals for discretization
    I : int
    number of paths to be simulated
    '''
    np.random.seed(1)
    if anti_path is True:
        sn = npr.standard_normal((par.M + 1, par.I//2))
    else:
        sn = npr.standard_normal((par.M + 1, par.I))
    return sn



def gbm_mcs_amer(par):
    ''' Valuation of American option in Black-Scholes-Merton
    by Monte Carlo simulation by LS algorithm. 
    Parameters
    ==========
    S0 : spot price
    K : strike float
    r : riskless interest rate
    I : int, number of paths to be simulated
    T : time to maturity, in years
    M : int, number of time intervals for discretization
    sigma : vol
    Returns
    =======
    C0 : float
    estimated present value of American call option
    '''
    dt = par.T / par.M 
    df = np.exp(-par.r * dt) # discount function

    # Generation of underlying asset process
    # Stock Price Paths
    S = par.S0 * np.exp(np.cumsum((par.r - 0.5 * par.sigma ** 2) * dt
    + par.sigma * np.sqrt(dt) * sn, axis=0)) # by exponentiating the Brownian motion
    S[0] = par.S0 # Initiliazing underlying path
    
    # put option pay-off
    h = np.maximum(par.K - S, 0)
    # LS algorithm
    V = np.copy(h)
    for t in range(par.M - 1, 0, -1):
        reg = lagfit(S[t], V[t + 1] * df, 10)
        C = lagval(S[t], reg)
        V[t] = np.where(C > h[t], V[t + 1] * df, h[t])
        
        # MCS estimator
        y_i = df * V[1]
        C0 = np.mean(y_i)
        SE = np.std(y_i) / np.sqrt(par.I)
    
    return C0, SE
# Regular Estimate loop
sn = gen_sn(par,False)


print("Reg","T:",par.T,"sigma:",par.sigma)
for par.S0 in range(36,44+1,2):
    print("S0:",par.S0,"Price,SE:",gbm_mcs_amer_reg(par)[0],gbm_mcs_amer_reg(par)[1])
def gbm_mcs_amer_AP(par):
dt = par.T / par.M 
df = np.exp(-par.r * dt) # discount function

# Generation of underlying asset process
# Stock Price Paths
S = par.S0 * np.exp(np.cumsum((par.r - 0.5 * par.sigma ** 2) * dt
+ par.sigma * np.sqrt(dt) * sn , axis=0)) # by exponentiating the Brownian motion
S[0] = par.S0
S1 = par.S0 * np.exp(np.cumsum((par.r - 0.5 * par.sigma ** 2) * dt
+ par.sigma * np.sqrt(dt) * -sn , axis=0)) # Antithetic paths
S1[0] = par.S0

# put option pay-off
h = np.maximum(par.K - S, 0)
h1 = np.maximum(par.K - S1, 0)
# LS algorithm
V = np.copy(h)
V1 = np.copy(h1)
for t in range(par.M - 1, 0, -1):
    reg = lagfit(S[t], V[t + 1] * df, 10)
    C = lagval(S[t], reg)
    V[t] = np.where(C > h[t], V[t + 1] * df, h[t])
    reg1 = lagfit(S1[t], V1[t + 1] * df, 10)
    C1 = lagval(S1[t], reg1)
    V1[t] = np.where(C1 > h1[t], V1[t + 1] * df, h1[t])
    
    # MCS estimator
    y_i = df * (V[1]+V1[1])/2 # avg. pairs
    C0 = np.mean(y_i)
    SE = np.std(y_i) / np.sqrt(par.I) # Sample std. dev. of avg. pairs

return C0, SE
  
# AP Estimate loop
sn = gen_sn(par,True)

print("AP","T:",par.T,"sigma:",par.sigma)
for par.S0 in range(36,44+1,2):
    print("S0:",par.S0,"Price,SE:",gbm_mcs_amer_AP(par)[0],gbm_mcs_amer_AP(par)[1])