Random GLSL的随机/噪声函数

Random GLSL的随机/噪声函数,random,shader,glsl,noise,perlin-noise,Random,Shader,Glsl,Noise,Perlin Noise,由于GPU驱动程序供应商通常不会费心在GLSL中实现noiseX,因此我正在寻找一个“graphics randomization swiss army knife”(图形随机化瑞士军刀)实用功能集,最好在GPU着色器中使用。我更喜欢GLSL,但任何语言的代码都适合我,我可以自己翻译成GLSL half rn(float xx){ half x0=floor(xx); half x1=x0+1; half v0 = frac(sin (x0*.0146

由于GPU驱动程序供应商通常不会费心在GLSL中实现
noiseX
,因此我正在寻找一个“graphics randomization swiss army knife”(图形随机化瑞士军刀)实用功能集,最好在GPU着色器中使用。我更喜欢GLSL,但任何语言的代码都适合我,我可以自己翻译成GLSL

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
具体来说,我希望:

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
a) 伪随机函数-N维,在[-1,1]或[0,1]上的均匀分布,由M维种子计算(理想情况下为任意值,但我同意将种子限制为,例如,对于均匀结果分布为0..1)。比如:

float random  (T seed);
vec2  random2 (T seed);
vec3  random3 (T seed);
vec4  random4 (T seed);
// T being either float, vec2, vec3, vec4 - ideally.
half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
b) 连续噪声像柏林噪声一样-同样是N维+均匀分布,具有一组受约束的值,而且看起来很好(一些配置柏林水平等外观的选项也很有用)。我希望签名如下:

float noise  (T coord, TT seed);
vec2  noise2 (T coord, TT seed);
// ...
half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}

我对随机数生成理论不太感兴趣,所以我非常希望能找到一个预先制作好的解决方案,但我也很欣赏这样的答案:“这是一个非常好的、有效的一维rand(),让我来解释一下如何在它的基础上制作一个好的N维rand()。

对于非常简单的伪随机现象,我用的是我在网上某处找到的一行:

float rand(vec2 co){
    return fract(sin(dot(co, vec2(12.9898, 78.233))) * 43758.5453);
}
half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
您还可以使用任何您喜欢的PRNG生成噪波纹理,然后以正常方式上载该纹理,并在着色器中对值进行采样;如果你愿意的话,我可以稍后再查一个代码示例

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}

另外,请查看Stefan Gustavson的Perlin和Simplex noise的GLSL实现。

还有一个由McEwan和@StefanGustavson描述的很好的实现,看起来像Perlin noise,但“不需要任何设置,即不需要纹理或均匀数组。只需将其添加到着色器源代码中,并在任何地方调用即可。”

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
这非常方便,特别是考虑到Gustavson的早期实现,@dep链接到,使用1D纹理(WebGL的着色器语言)

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
Gustavson的实现使用1D纹理

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
不,从2005年开始就没有了。只是人们坚持下载旧版本。您提供的链接上的版本仅使用8位2D纹理

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
Ashima的Ian McEwan和我自己的新版本没有使用纹理,但在具有大量纹理带宽的典型桌面平台上运行的速度大约是其速度的一半。在移动平台上,无纹理版本可能更快,因为纹理通常是一个重要的瓶颈

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
我们积极维护的源存储库是:

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
此处是无纹理和使用纹理版本的噪波的集合(仅使用2D纹理):

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}

如果您有任何具体问题,请随时直接给我发电子邮件(我的电子邮件地址可以在
classicnoise*.glsl
源代码中找到)。

我想到,您可以使用一个简单的整数散列函数,并将结果插入浮点的尾数。IIRC GLSL规范保证32位无符号整数和IEEE二进制32浮点表示,因此它应该是完全可移植的

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
我刚才试了一下。结果非常好:我尝试的每一个输入看起来都像静态的,根本没有可见的模式。相比之下,在相同的输入条件下,流行的sin/fract代码片段在我的GPU上有相当明显的对角线

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
一个缺点是它需要GLSL v3.30。虽然它看起来足够快,但我还没有根据经验量化它的性能。AMD的着色器分析器声称HD5870上的vec2版本每时钟13.33像素。与sin/fract片段的每个时钟16像素形成对比。所以它肯定会慢一点

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
这是我的实现。我把它放在各种排列的想法中,以便更容易从中导出自己的函数

/*
    static.frag
    by Spatial
    05 July 2013
*/

#version 330 core

uniform float time;
out vec4 fragment;



// A single iteration of Bob Jenkins' One-At-A-Time hashing algorithm.
uint hash( uint x ) {
    x += ( x << 10u );
    x ^= ( x >>  6u );
    x += ( x <<  3u );
    x ^= ( x >> 11u );
    x += ( x << 15u );
    return x;
}



// Compound versions of the hashing algorithm I whipped together.
uint hash( uvec2 v ) { return hash( v.x ^ hash(v.y)                         ); }
uint hash( uvec3 v ) { return hash( v.x ^ hash(v.y) ^ hash(v.z)             ); }
uint hash( uvec4 v ) { return hash( v.x ^ hash(v.y) ^ hash(v.z) ^ hash(v.w) ); }



// Construct a float with half-open range [0:1] using low 23 bits.
// All zeroes yields 0.0, all ones yields the next smallest representable value below 1.0.
float floatConstruct( uint m ) {
    const uint ieeeMantissa = 0x007FFFFFu; // binary32 mantissa bitmask
    const uint ieeeOne      = 0x3F800000u; // 1.0 in IEEE binary32

    m &= ieeeMantissa;                     // Keep only mantissa bits (fractional part)
    m |= ieeeOne;                          // Add fractional part to 1.0

    float  f = uintBitsToFloat( m );       // Range [1:2]
    return f - 1.0;                        // Range [0:1]
}



// Pseudo-random value in half-open range [0:1].
float random( float x ) { return floatConstruct(hash(floatBitsToUint(x))); }
float random( vec2  v ) { return floatConstruct(hash(floatBitsToUint(v))); }
float random( vec3  v ) { return floatConstruct(hash(floatBitsToUint(v))); }
float random( vec4  v ) { return floatConstruct(hash(floatBitsToUint(v))); }





void main()
{
    vec3  inputs = vec3( gl_FragCoord.xy, time ); // Spatial and temporal inputs
    float rand   = random( inputs );              // Random per-pixel value
    vec3  luma   = vec3( rand );                  // Expand to RGB

    fragment = vec4( luma, 1.0 );
}
half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
/*
静态模式
按空间
2013年7月5日
*/
#330版核心
均匀浮动时间;
输出vec4片段;
//Bob Jenkins一次一个哈希算法的一次迭代。
uint散列(uint x){
x+=(x>6u);
x+=(x>11u);

x+=(x1d柏林的一个直的、锯齿状的版本,本质上是一个随机的lfo之字形

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}

我还在shadertoy所有者inigo quilez perlin教程网站和voronoi等网站上找到了1-2-3-4d perlin noise,他有完整的fast实现和代码。

刚刚找到了这个版本的GPU 3d noise,尽管它是最快的:

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
#ifndef __noise_hlsl_
#define __noise_hlsl_

// hash based 3d value noise
// function taken from https://www.shadertoy.com/view/XslGRr
// Created by inigo quilez - iq/2013
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

// ported from GLSL to HLSL

float hash( float n )
{
    return frac(sin(n)*43758.5453);
}

float noise( float3 x )
{
    // The noise function returns a value in the range -1.0f -> 1.0f

    float3 p = floor(x);
    float3 f = frac(x);

    f       = f*f*(3.0-2.0*f);
    float n = p.x + p.y*57.0 + 113.0*p.z;

    return lerp(lerp(lerp( hash(n+0.0), hash(n+1.0),f.x),
                   lerp( hash(n+57.0), hash(n+58.0),f.x),f.y),
               lerp(lerp( hash(n+113.0), hash(n+114.0),f.x),
                   lerp( hash(n+170.0), hash(n+171.0),f.x),f.y),f.z);
}

#endif

黄金噪音

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
// Gold Noise ©2015 dcerisano@standard3d.com
// - based on the Golden Ratio
// - uniform normalized distribution
// - fastest static noise generator function (also runs at low precision)
// - use with indicated seeding method. 

float PHI = 1.61803398874989484820459;  // Φ = Golden Ratio   

float gold_noise(in vec2 xy, in float seed){
       return fract(tan(distance(xy*PHI, xy)*seed)*xy.x);
}

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
截至2017年9月9日,@appas回答中的当前函数相比,该函数改善了随机分布:

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}

@appas函数也不完整,因为没有提供种子(uv不是种子-每帧都相同),并且不适用于低精度芯片组。默认情况下,金色噪波以低精度运行(速度快得多)。

请参见下面的示例,了解如何向渲染纹理添加白噪波。
half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
解决方案是使用两种纹理:原始和纯白色噪波,如下所示:

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
共享片段包含参数uNoiseFactor,该参数在主应用程序每次渲染时更新:

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
float noiseValue = (float)(mRand.nextInt() % 1000)/1000;
int noiseFactorUniformHandle = GLES20.glGetUniformLocation( mProgram, "sNoiseTextureUnit");
GLES20.glUniform1f(noiseFactorUniformHandle, noiseFactor);
散列: 现在有了webGL2.0,所以在(w)GLSL中可以使用整数。 ->对于高质量的可移植散列(成本与丑陋的浮点散列类似),我们现在可以使用“严肃的”散列技术。 IQ实施了一些(以及更多)

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
例如:

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}

我已经将Ken Perlin的一个Java实现翻译成了GLSL,并在ShaderToy上的几个项目中使用了它

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
以下是我对GLSL的解释:

half  rn(float xx){         
    half x0=floor(xx);
    half x1=x0+1;
    half v0 = frac(sin (x0*.014686)*31718.927+x0);
    half v1 = frac(sin (x1*.014686)*31718.927+x1);          

    return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
int b(int N, int B) { return N>>B & 1; }
int T[] = int[](0x15,0x38,0x32,0x2c,0x0d,0x13,0x07,0x2a);
int A[] = int[](0,0,0);

int b(int i, int j, int k, int B) { return T[b(i,B)<<2 | b(j,B)<<1 | b(k,B)]; }

int shuffle(int i, int j, int k) {
    return b(i,j,k,0) + b(j,k,i,1) + b(k,i,j,2) + b(i,j,k,3) +
        b(j,k,i,4) + b(k,i,j,5) + b(i,j,k,6) + b(j,k,i,7) ;
}

float K(int a, vec3 uvw, vec3 ijk)
{
    float s = float(A[0]+A[1]+A[2])/6.0;
    float x = uvw.x - float(A[0]) + s,
        y = uvw.y - float(A[1]) + s,
        z = uvw.z - float(A[2]) + s,
        t = 0.6 - x * x - y * y - z * z;
    int h = shuffle(int(ijk.x) + A[0], int(ijk.y) + A[1], int(ijk.z) + A[2]);
    A[a]++;
    if (t < 0.0)
        return 0.0;
    int b5 = h>>5 & 1, b4 = h>>4 & 1, b3 = h>>3 & 1, b2= h>>2 & 1, b = h & 3;
    float p = b==1?x:b==2?y:z, q = b==1?y:b==2?z:x, r = b==1?z:b==2?x:y;
    p = (b5==b3 ? -p : p); q = (b5==b4 ? -q : q); r = (b5!=(b4^b3) ? -r : r);
    t *= t;
    return 8.0 * t * t * (p + (b==0 ? q+r : b2==0 ? q : r));
}

float noise(float x, float y, float z)
{
    float s = (x + y + z) / 3.0;  
    vec3 ijk = vec3(int(floor(x+s)), int(floor(y+s)), int(floor(z+s)));
    s = float(ijk.x + ijk.y + ijk.z) / 6.0;
    vec3 uvw = vec3(x - float(ijk.x) + s, y - float(ijk.y) + s, z - float(ijk.z) + s);
    A[0] = A[1] = A[2] = 0;
    int hi = uvw.x >= uvw.z ? uvw.x >= uvw.y ? 0 : 1 : uvw.y >= uvw.z ? 1 : 2;
    int lo = uvw.x <  uvw.z ? uvw.x <  uvw.y ? 0 : 1 : uvw.y <  uvw.z ? 1 : 2;
    return K(hi, uvw, ijk) + K(3 - hi - lo, uvw, ijk) + K(lo, uvw, ijk) + K(0, uvw, ijk);
}
intb(intn,intb){return N>>b&1;}
int T[]=int[](0x15,0x38,0x32,0x2c,0x0d,0x13,0x07,0x2a);
int A[]=int[](0,0,0);
intb(inti,intj,intk,intb){返回T[b(i,b)4&1,b3=h>>3&1,b2=h>>2&1,b=h&3;
浮动p=b=1?x:b=2?y:z,q=b=1?y:b=2?z:x,r=b=1?z:b=2?x:y;
p=(b5==b3?-p:p);q=(b5==b4?-q:q);r=(b5!=(b4^b3)