Tensorflow 微调VGG-16在Keras中的慢速训练

Tensorflow 微调VGG-16在Keras中的慢速训练,tensorflow,keras,computer-vision,conv-neural-network,vgg-net,Tensorflow,Keras,Computer Vision,Conv Neural Network,Vgg Net,我试图用LFW数据集对VGG模型的最后两层进行微调,我改变了softmax层的维度,删除了原来的一层,在我的例子中添加了19个输出的softmax层,因为我正在尝试训练19个类。 我还想微调最后一个完全连接的层,以便制作一个“自定义特征提取器” 我正在设置我希望不可培训的层,如下所示: for layer in model.layers: layer.trainable = False 使用gpu,我每一个历元需要1个小时的时间来训练19节课,每节课至少40张图片 因为我没有很多样本,

我试图用LFW数据集对VGG模型的最后两层进行微调,我改变了softmax层的维度,删除了原来的一层,在我的例子中添加了19个输出的softmax层,因为我正在尝试训练19个类。 我还想微调最后一个完全连接的层,以便制作一个“自定义特征提取器”

我正在设置我希望不可培训的层,如下所示:

for layer in model.layers:
    layer.trainable = False
使用gpu,我每一个历元需要1个小时的时间来训练19节课,每节课至少40张图片

因为我没有很多样本,所以这次训练表现有点奇怪

有人知道为什么会这样吗

以下是日志:

Image shape:  (224, 224, 3)
Number of classes:  19
K.image_dim_ordering: th

____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 3, 224, 224)   0                                            
____________________________________________________________________________________________________
conv1_1 (Convolution2D)          (None, 64, 224, 224)  1792        input_1[0][0]                    
____________________________________________________________________________________________________
conv1_2 (Convolution2D)          (None, 64, 224, 224)  36928       conv1_1[0][0]                    
____________________________________________________________________________________________________
pool1 (MaxPooling2D)             (None, 64, 112, 112)  0           conv1_2[0][0]                    
____________________________________________________________________________________________________
conv2_1 (Convolution2D)          (None, 128, 112, 112) 73856       pool1[0][0]                      
____________________________________________________________________________________________________
conv2_2 (Convolution2D)          (None, 128, 112, 112) 147584      conv2_1[0][0]                    
____________________________________________________________________________________________________
pool2 (MaxPooling2D)             (None, 128, 56, 56)   0           conv2_2[0][0]                    
____________________________________________________________________________________________________
conv3_1 (Convolution2D)          (None, 256, 56, 56)   295168      pool2[0][0]                      
____________________________________________________________________________________________________
conv3_2 (Convolution2D)          (None, 256, 56, 56)   590080      conv3_1[0][0]                    
____________________________________________________________________________________________________
conv3_3 (Convolution2D)          (None, 256, 56, 56)   590080      conv3_2[0][0]                    
____________________________________________________________________________________________________
pool3 (MaxPooling2D)             (None, 256, 28, 28)   0           conv3_3[0][0]                    
____________________________________________________________________________________________________
conv4_1 (Convolution2D)          (None, 512, 28, 28)   1180160     pool3[0][0]                      
____________________________________________________________________________________________________
conv4_2 (Convolution2D)          (None, 512, 28, 28)   2359808     conv4_1[0][0]                    
____________________________________________________________________________________________________
conv4_3 (Convolution2D)          (None, 512, 28, 28)   2359808     conv4_2[0][0]                    
____________________________________________________________________________________________________
pool4 (MaxPooling2D)             (None, 512, 14, 14)   0           conv4_3[0][0]                    
____________________________________________________________________________________________________
conv5_1 (Convolution2D)          (None, 512, 14, 14)   2359808     pool4[0][0]                      
____________________________________________________________________________________________________
conv5_2 (Convolution2D)          (None, 512, 14, 14)   2359808     conv5_1[0][0]                    
____________________________________________________________________________________________________
conv5_3 (Convolution2D)          (None, 512, 14, 14)   2359808     conv5_2[0][0]                    
____________________________________________________________________________________________________
pool5 (MaxPooling2D)             (None, 512, 7, 7)     0           conv5_3[0][0]                    
____________________________________________________________________________________________________
flatten (Flatten)                (None, 25088)         0           pool5[0][0]                      
____________________________________________________________________________________________________
fc6 (Dense)                      (None, 4096)          102764544   flatten[0][0]                    
____________________________________________________________________________________________________
fc7 (Dense)                      (None, 4096)          16781312    fc6[0][0]                        
____________________________________________________________________________________________________
batchnormalization_1 (BatchNorma (None, 4096)          16384       fc7[0][0]                        
____________________________________________________________________________________________________
fc8 (Dense)                      (None, 19)            77843       batchnormalization_1[0][0]       
====================================================================================================
Total params: 134,354,771
Trainable params: 16,867,347
Non-trainable params: 117,487,424
____________________________________________________________________________________________________
None
Train on 1120 samples, validate on 747 samples
Epoch 1/20
1120/1120 [==============================] - 7354s - loss: 2.9517 - acc: 0.0714 - val_loss: 2.9323 - val_acc: 0.2316
Epoch 2/20
1120/1120 [==============================] - 7356s - loss: 2.8053 - acc: 0.1732 - val_loss: 2.9187 - val_acc: 0.3614
Epoch 3/20
1120/1120 [==============================] - 7358s - loss: 2.6727 - acc: 0.2643 - val_loss: 2.9034 - val_acc: 0.3882
Epoch 4/20
1120/1120 [==============================] - 7361s - loss: 2.5565 - acc: 0.3071 - val_loss: 2.8861 - val_acc: 0.4016
Epoch 5/20
1120/1120 [==============================] - 7360s - loss: 2.4597 - acc: 0.3518 - val_loss: 2.8667 - val_acc: 0.4043
Epoch 6/20
1120/1120 [==============================] - 7363s - loss: 2.3827 - acc: 0.3714 - val_loss: 2.8448 - val_acc: 0.4163
Epoch 7/20
1120/1120 [==============================] - 7364s - loss: 2.3108 - acc: 0.4045 - val_loss: 2.8196 - val_acc: 0.4244
Epoch 8/20
1120/1120 [==============================] - 7377s - loss: 2.2463 - acc: 0.4268 - val_loss: 2.7905 - val_acc: 0.4324
Epoch 9/20
1120/1120 [==============================] - 7373s - loss: 2.1824 - acc: 0.4563 - val_loss: 2.7572 - val_acc: 0.4404
Epoch 10/20
1120/1120 [==============================] - 7373s - loss: 2.1313 - acc: 0.4732 - val_loss: 2.7190 - val_acc: 0.4471
Epoch 11/20
1120/1120 [==============================] - 7440s - loss: 2.0766 - acc: 0.5036 - val_loss: 2.6754 - val_acc: 0.4565
Epoch 12/20
1120/1120 [==============================] - 7414s - loss: 2.0323 - acc: 0.5170 - val_loss: 2.6263 - val_acc: 0.4565
Epoch 13/20
1120/1120 [==============================] - 7413s - loss: 1.9840 - acc: 0.5420 - val_loss: 2.5719 - val_acc: 0.4592
Epoch 14/20
1120/1120 [==============================] - 7414s - loss: 1.9467 - acc: 0.5464 - val_loss: 2.5130 - val_acc: 0.4592
Epoch 15/20
1120/1120 [==============================] - 7412s - loss: 1.9039 - acc: 0.5652 - val_loss: 2.4513 - val_acc: 0.4592
Epoch 16/20
1120/1120 [==============================] - 7413s - loss: 1.8716 - acc: 0.5723 - val_loss: 2.3906 - val_acc: 0.4578
Epoch 17/20
1120/1120 [==============================] - 7415s - loss: 1.8214 - acc: 0.5866 - val_loss: 2.3319 - val_acc: 0.4538
Epoch 18/20
1120/1120 [==============================] - 7416s - loss: 1.7860 - acc: 0.5982 - val_loss: 2.2789 - val_acc: 0.4538
Epoch 19/20
1120/1120 [==============================] - 7430s - loss: 1.7623 - acc: 0.5973 - val_loss: 2.2322 - val_acc: 0.4538
Epoch 20/20
1120/1120 [==============================] - 7856s - loss: 1.7222 - acc: 0.6170 - val_loss: 2.1913 - val_acc: 0.4538
Accuracy: 45.38%

结果不太好,因为我无法训练它获取更多数据,因为它需要太长时间。有什么想法吗?

请注意,为了训练
16867347
参数,您需要输入
~19*40<800
示例。因此,这基本上是每个示例的
2e6
参数。这根本无法正常工作。尝试删除所有
FCN
层(
density
层位于顶部),并放置较小的
density
,每个层大约有50个神经元。在我看来,这应该有助于提高准确性和加快训练

在《玛辛·莫伊科的沉迷》中——接下来呢:1。移除顶部(致密)层。2.计算图像的网络输出(这样就有19*40个向量)。3.在这个向量上训练你的新密集部分。4.结合这两个网络(CNN和Dense)(无论如何,请注意,可能不会给出太好的结果)。我想了想,你想的是从图像中提取特征,然后用这些特征训练连续的稠密层?是的。只需从图像中提取特征向量并训练密集层。也许你会得到一个可以接受的结果。好吧,我明天会试试,我会告诉你仍然很慢,但它有效。我在80%的准确率和1.9的损失与20个时代的验证,所以也许我需要更多的数据为每个类…是的,我知道,我尝试过,但性能很差,如验证精度冻结在20%,每类至少有20个图像。因此,我计划更改我的数据集,因为LFW有很多类只有一个图像,所以如果我使用每个类具有更多表示的faceScrub,它将更好地与原始VGG一起工作,显然,使用100个类,每个类至少有200个图像,即……你认为如何?谢谢!!你觉得计算时间怎么样?我改变了数据集(现在我使用的是faceScrub),我尝试了你提出的方法,每个有2个密度的128个神经元,但仍然很慢。我认为这来自于卷积层,因为我的图像尺寸是224*224。我现在的结果是
val_loss:2.4294-val_acc:0.8350
对50个类别进行分类,每个类别23张图像,我应该采集更多数据吗?丢失功能减少得非常慢您的批处理大小是多少?我安装了tensorflow的两个版本(gpu和cpu),默认keras采用cpu版本,所以我删除了这个版本,它工作了。。。。谢谢!!!:)