Concurrency CUDA多GPU执行中的并发性

Concurrency CUDA多GPU执行中的并发性,concurrency,cuda,gpu,multiple-gpu,Concurrency,Cuda,Gpu,Multiple Gpu,我在多GPU系统上运行cuda内核函数,使用4GPU。我希望它们能同时发布,但事实并非如此。我测量每个内核的启动时间,第二个内核在第一个内核完成执行后启动。因此,在4GPU上启动内核并不比1单个GPU快 如何使它们同时工作 这是我的代码: cudaSetDevice(0); GPU_kernel<<< gridDim, threadsPerBlock >>>(d_result_0, parameterA +(0*rateA), parameterB + (0*

我在多GPU系统上运行cuda内核函数,使用
4
GPU。我希望它们能同时发布,但事实并非如此。我测量每个内核的启动时间,第二个内核在第一个内核完成执行后启动。因此,在
4
GPU上启动内核并不比
1
单个GPU快

如何使它们同时工作

这是我的代码:

cudaSetDevice(0);
GPU_kernel<<< gridDim, threadsPerBlock >>>(d_result_0, parameterA +(0*rateA), parameterB + (0*rateB));
cudaMemcpyAsync(h_result_0, d_result_0, mem_size_result, cudaMemcpyDeviceToHost);

cudaSetDevice(1);
GPU_kernel<<< gridDim, threadsPerBlock >>>(d_result_1, parameterA +(1*rateA), parameterB + (1*rateB));
cudaMemcpyAsync(h_result_1, d_result_1, mem_size_result, cudaMemcpyDeviceToHost);

cudaSetDevice(2);
GPU_kernel<<< gridDim, threadsPerBlock >>>(d_result_2, parameterA +(2*rateA), parameterB + (2*rateB));
cudaMemcpyAsync(h_result_2, d_result_2, mem_size_result, cudaMemcpyDeviceToHost);

cudaSetDevice(3);
GPU_kernel<<< gridDim, threadsPerBlock >>>(d_result_3, parameterA +(3*rateA), parameterB + (3*rateB));
cudaMemcpyAsync(h_result_3, d_result_3, mem_size_result, cudaMemcpyDeviceToHost);
cudaSetDevice(0);
GPU内核>(d_结果_0,参数A+(0*rateA),参数B+(0*rateB));
cudaMemcpyAsync(h_result_0,d_result_0,mem_size_result,cudamemcpydevicetoost);
cudaSetDevice(1);
GPU内核>(d_结果_1,参数A+(1*rateA),参数B+(1*rateB));
cudaMemcpyAsync(h_result_1,d_result_1,mem_size_result,cudamemcpydevicetoost);
cudaSetDevice(2);
GPU内核>(d_结果_2,参数A+(2*rateA),参数B+(2*rateB));
cudaMemcpyAsync(h_result_2,d_result_2,mem_size_result,cudamemcpydevicetoost);
cudaSetDevice(3);
GPU内核>(d_结果_3,参数A+(3*rateA),参数B+(3*rateB));
cudaMemcpyAsync(h_result_3,d_result_3,mem_size_result,cudamemcpydevicetoost);

您可能需要使用
cudaMemcpyAsync
cudaMemcpy
正在阻止调用,因此它不会在代码完成之前将执行返回到代码,因此您的代码在完成当前代码的例程之前不会切换GPU

但是,内核调用是异步的(对于CPU),因此您发布的代码可能会导致一些竞争条件(
cudaMemcpy
可能在内核完成之前开始执行)。 正如@Talonmes在评论中指出的那样,由于
cudaMemcpy
/
cudaMemcpyAsync
与内核启动进入同一个流,所以一切都是按正确的顺序执行的


我建议您使用CUDA Streams;是使用streams进行多GPU编程的简要介绍。这对您的情况没有多大帮助,但在更复杂的应用程序中使用可能非常方便,例如,如果您需要在不同的设备之间同步函数调用。

我做了一些实验,在
4
开普勒K20c GPU集群上实现并发执行。我考虑了
8
测试用例,下面报告了它们的相应代码以及分析器时间线

测试用例#1-“广度优先”方法-同步复制

-代码-

-探查器时间轴-

这一次,在内存拷贝和内核执行中都无法实现并发

测试用例#3-“深度优先”方法-使用流的异步复制

-代码-

-探查器时间轴-

并发性再次实现

测试用例#6“宽度优先”方法,采用异步复制流

-代码-

-探查器时间轴-

与相应的“深度优先”方法一样,实现了并发性

结论 使用异步拷贝可以保证并发执行,可以使用特意创建的流,也可以使用默认流

注意
在上面所有的例子中,我已经注意提供足够的工作来完成GPU,无论是在拷贝方面还是在计算任务方面。未能向集群提供足够的工作可能会妨碍观察并发执行。

我不理解您的第二段。什么时候默认流中的
cudaMemcpy
调用会与默认流中的内核执行重叠?亲爱的Alan,谢谢你的回答。但正如您发送的链接第6页所述,所有GPU都应该并发执行(不使用流和事件)。我正在执行一个与示例非常类似的代码,但它们不能并发工作。我刚刚测试了cudaMemcpyAsync,但是时间没有改变。您所做的更改不会有任何影响,您必须使用
cudaMemcpyAsync
流,否则行为与
cudaMemcpy
相同。要使代码正常工作,请先执行所有内核启动,然后再执行所有副本。副本仍然会相互阻塞,但所有内核都将并行运行。@Talonmes但复制是最耗时的部分(需要比内核启动多1000倍!)是否有任何机制使它们并行运行?您误解了时间安排。因为内核启动是异步的,并且复制阻塞,所以您测量的复制时间包括内核执行和复制。您可以通过在内核启动和复制之间插入cudaDeviceSynchronize来确认这一点。随着memcpy速度的加快和cudaDeviceSynchronize占用了大部分时间,请注意。然后返回并重新阅读我的评论和@aland的回答,它们包含两个解决问题的有效方法。@Talonmes,空流上的cudamemcpysync()行为与cudaMemcpy()不同。cudaMemcpy()是完全同步的。cudaMemcpyAsync()将在操作完成之前将控制权返回给调用方。@user1555209:这是在什么平台上?如果启用了Windows,并且启用了WDDM(自Windows Vista以来的默认设置),则cudaSetDevice()调用将“thunking”进入内核模式,以向硬件提交工作。这是一个非常昂贵的操作,它可能会压倒硬件并行执行这些内核的能力。我一直用这个作为参考。考虑到这个问题上的低数量,你也可以考虑把它发布到别的地方。非常感谢。
#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
template<class T>
struct plan {
    T *d_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    double *inputMatrices = (double *)malloc(N * sizeof(double));

    // --- "Breadth-first" approach - no async
    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpy(plan[k].d_data, inputMatrices + k * NperGPU, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpy(inputMatrices + k * NperGPU, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}
#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
template<class T>
struct plan {
    T *d_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    double *inputMatrices = (double *)malloc(N * sizeof(double));

    // --- "Depth-first" approach - no async
    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpy(plan[k].d_data, inputMatrices + k * NperGPU, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
        gpuErrchk(cudaMemcpy(inputMatrices + k * NperGPU, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}
#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
template<class T>
struct plan {
    T               *d_data;
    T               *h_data;
    cudaStream_t    stream;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
    gpuErrchk(cudaMallocHost((void **)&plan.h_data, NperGPU * sizeof(T)));
    gpuErrchk(cudaStreamCreate(&plan.stream));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

     // --- "Depth-first" approach - async
    for (int k = 0; k < numGPUs; k++)
    {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, plan[k].h_data, NperGPU * sizeof(double), cudaMemcpyHostToDevice, plan[k].stream));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE, 0, plan[k].stream>>>(plan[k].d_data, NperGPU);
        gpuErrchk(cudaMemcpyAsync(plan[k].h_data, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost, plan[k].stream));
    }

    gpuErrchk(cudaDeviceReset());
}
#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
template<class T>
struct plan {
    T               *d_data;
    T               *h_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
    gpuErrchk(cudaMallocHost((void **)&plan.h_data, NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    // --- "Depth-first" approach - no stream
    for (int k = 0; k < numGPUs; k++)
    {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, plan[k].h_data, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
        gpuErrchk(cudaMemcpyAsync(plan[k].h_data, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}
#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
template<class T>
struct plan {
    T               *d_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    // --- "Depth-first" approach - no stream
    double *inputMatrices;   gpuErrchk(cudaMallocHost(&inputMatrices, N * sizeof(double)));
    for (int k = 0; k < numGPUs; k++)
    {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, inputMatrices + k * NperGPU, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
        gpuErrchk(cudaMemcpyAsync(inputMatrices + k * NperGPU, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}
#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
// --- Async
template<class T>
struct plan {
    T               *d_data;
    T               *h_data;
    cudaStream_t    stream;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
    gpuErrchk(cudaMallocHost((void **)&plan.h_data, NperGPU * sizeof(T)));
    gpuErrchk(cudaStreamCreate(&plan.stream));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    // --- "Breadth-first" approach - async
    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, plan[k].h_data, NperGPU * sizeof(double), cudaMemcpyHostToDevice, plan[k].stream));
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE, 0, plan[k].stream>>>(plan[k].d_data, NperGPU);
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].h_data, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost, plan[k].stream));
    }

    gpuErrchk(cudaDeviceReset());
}
#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
// --- Async
template<class T>
struct plan {
    T               *d_data;
    T               *h_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
    gpuErrchk(cudaMallocHost((void **)&plan.h_data, NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    // --- "Breadth-first" approach - async
    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, plan[k].h_data, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].h_data, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}
#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
// --- Async
template<class T>
struct plan {
    T               *d_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    // --- "Breadth-first" approach - async
    double *inputMatrices;   gpuErrchk(cudaMallocHost(&inputMatrices, N * sizeof(double)));
    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, inputMatrices + k * NperGPU, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(inputMatrices + k * NperGPU, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}