C++ 如何将std::function作为函数指针传递?

C++ 如何将std::function作为函数指针传递?,c++,r,function-pointers,std-function,C++,R,Function Pointers,Std Function,我试图编写一个类模板,它在内部使用一个C函数(BFGS优化的实现,由R环境提供),接口如下: void vmmin(int n, double *x, double *Fmin, optimfn fn, optimgr gr, ... , void *ex, ... ); 其中fn和gr是类型为 typedef double optimfn(int n, double *par, void *ex); 及 分别。我的C++类模板如下所示: tem

我试图编写一个类模板,它在内部使用一个
C
函数(BFGS优化的实现,由
R
环境提供),接口如下:

void vmmin(int n, double *x, double *Fmin, 
           optimfn fn, optimgr gr, ... ,
           void *ex, ... );
其中
fn
gr
是类型为

typedef double optimfn(int n, double *par, void *ex);

分别。我的
C++
类模板如下所示:

template <typename T>
class optim {
 public:
  // ...
  void minimize(T& func, arma::vec &dpar, void *ex) {
    std::function<optimfn> fn = 
      std::bind(&T::fr, func, std::placeholders::_1, 
                std::placeholders::_2, std::placeholders::_3);
    std::function<optimgr> gr = 
      std::bind(&T::grr, func, std::placeholders::_1,
                std::placeholders::_2, std::placeholders::_3,
                std::placeholders::_4);
    // ERROR: cannot convert std::function to function pointer
    vmmin(... , fn, gr, ...);
    // ...
  }  
};
模板
类optim{
公众:
// ...
无效最小化(T&func,arma::vec&dpar,无效*ex){
std::函数fn=
std::bind(&T::fr,func,std::占位符::\u 1,
std::占位符::_2,std::占位符::_3);
std::函数gr=
标准::绑定(&T::grr,func,标准::占位符::\u 1,
标准::占位符::_2,标准::占位符::_3,
标准::占位符::4);
//错误:无法将std::函数转换为函数指针
vmmin(…,fn,gr,…);
// ...
}  
};
因此,它可以由具有两个指定成员函数的任何类实例化,例如:

class Rosen {
 public:
  // ...
  double fr(int n, double *par, void *ex);
  void grr(int n, double *par, double *gr, void *ex);
 private:
  // ...
};

// main.cc
Rosen func;
optim<Rosen> obj;
obj.minimize(func, dpar, ex);
classrosen{
公众:
// ...
双倍fr(整数n,双倍*面值,无效*汇率);
无效grr(整数n,双倍*par,双倍*gr,无效*ex);
私人:
// ...
};
//main.cc
Rosen func;
optimobj;
目标最小化(func,dpar,ex);

这可能吗?或者有更好的方法来实现这一点——将两个成员函数分别作为函数指针传递?(如果目标函数和相应的梯度很简单,写两个函数是绝对可以的。但是,大多数时候,我遇到的问题要复杂得多,我必须将问题作为一个类来实现)。

基本上,你需要一个具有正确签名的自由函数,使用带有“用户数据”的
void*
参数(如果没有用户数据,它将无法工作),以某种方式从中提取指向
std::function
的指针/引用,并使用其他参数调用它。用一个简单的例子来说明我的意思:

void call_it(int value, void * user) {
  std::function<void(int)> * f = static_cast<std::function<void(int)>*>(user);
  (*f)(value);
}
// pass it as callback:
registerCallback(call_it, static_cast<void *>(&my_std_function));
一个用于多个功能:

template<std::size_t Num>
struct Multi {
  template<std::size_t I, typename R, typename... Args>
  struct Extract {
    std::function<R(Args...)> & get_function(void * ptr) {
      auto arr = static_cast<std::array<void *, Num> *>(ptr);
      return *(static_cast<std::function<R(Args...)>*>((*arr)[I]));
    }
  };
  template<typename... Fns>
  static void * wrap(Fns &... fns) {
    static_assert(sizeof...(fns) == Num, "Don't lie!");
    std::array<void *, Num> arr = { static_cast<void *>(&fns)... };
    return static_cast<void*>(new std::array<void *, Num>(std::move(arr)));
  }
  static void free_wrap_result(void * ptr) {
    delete (static_cast<std::array<void *, Num>*>(ptr));
  }
};
如果t
(见下文)只是我对
std::conditional
的简写,则需要实现
使用
忽略

struct Ignore {
  template<typename Tuple>
  static std::tuple<> from(Tuple) {
    return {};
  }
};
template<std::size_t N>
struct Use {
  template<typename Tuple>
  static auto from(Tuple t) {
    return std:: make_tuple(std::get<N>(t));
  }
};

另一种解决方案是让
optim
类使用两个(可能是纯的)虚拟函数发挥其魔力,然后继承定义一个实现它们的新类
Rosen
。这看起来像

class optim {
    public:
        // ...

        virtual double fn(int n, double *par, void *ex) = 0;
        virtual void gr(int n, double *par, double *gr, void *ex) = 0;

        void minimize(arma::vec &dpar, void *ex) {
            vmmin(... , &fn, &gr, ...);
            // ...
        }
};

class Rosen : public optim {
    public:
        // ...
        double fn(int n, double *par, void *ex);
        void gr(int n, double *par, double *gr, void *ex);

    private:
        // ...
};

// main.cc    
Rosen obj;
obj.minimize(dpar, ex);
让我先说:

我不赞成使用以下库

#include<tuple>
#include<type_traits>
#include<utility>

// func_traits
template <typename T>
struct func_traits : public func_traits<decltype(&std::remove_reference_t<T>::operator())> {};

template <typename Callable, typename Ret, typename... Args>
struct func_traits<Ret(Callable::*)(Args...) const> {
    using ptr_type = Ret (*) (Args...);
    using return_type =  Ret;

    template<std::size_t i>
    struct arg
    {
        using type = typename std::tuple_element<i, std::tuple<Args...>>::type;
    };

    template<typename Ret2>
    using cast_return_type = Ret2 (*) (Args...);
};

template<typename Ret, typename... Args>
struct func_traits<Ret (&) (Args...)> : public func_traits<Ret (*) (Args...)> {};

template <typename Ret, typename... Args>
struct func_traits<Ret (*) (Args...)>
{
    using ptr_type = Ret (*) (Args...);
    using return_type =  Ret;

    template<std::size_t i>
    struct arg
    {
        using type = typename std::tuple_element<i, std::tuple<Args...>>::type;
    };

    template<typename Ret2>
    using cast_return_type = Ret2 (*) (Args...);
};



// constexpr counter
template <int N>
struct flag
{
    friend constexpr int adl_flag(flag<N>);
    constexpr operator int() { return N; }
};

template <int N>
struct write
{
    friend constexpr int adl_flag(flag<N>) { return N; }
    static constexpr int value = N;
};

template <int N, int = adl_flag(flag<N>{})>
constexpr int read(int, flag<N>, int R = read(0, flag<N + 1>{}))
{
    return R;
}

template <int N>
constexpr int read(float, flag<N>)
{
    return N;
}

template <int N = 0>
constexpr int counter(int R = write<read(0, flag<N>{})>::value)
{
    return R;
}


// fnptr
template<int nonce = counter()>
class fnptr
{
    //these are to make sure fnptr is never constructed
    //technically the first one should be enough, but compilers are not entirely standard conformant
    explicit fnptr() = delete;
    fnptr(const fnptr&) {}
    ~fnptr() = delete;

    template<typename Callable, typename Ret, typename... Args>
    static auto cast(Callable&& c, Ret(*fp)(Args...)) -> decltype(fp)
    {
        using callable_type = std::remove_reference_t<Callable>;
        static callable_type clb{std::forward<Callable>(c)};
        static bool full = false;
        if(full)
        {
            clb.~callable_type();
            new (&clb) decltype(clb){std::forward<Callable>(c)};
        }
        else
            full = true;
        return [](Args... args) noexcept(noexcept(clb(std::forward<Args>(args)...))) -> Ret
        {
            return Ret(clb(std::forward<Args>(args)...));
        };
    }

public:
    template<typename Signature, typename Callable>
    static Signature* cast(Callable&& c)
    {
        return cast(std::forward<Callable>(c), static_cast<Signature*>(nullptr));
    }

    template<typename Signature, typename Ret, typename... Args>
    static auto cast(Ret (*fp)(Args...))
    {
        static decltype(fp) fnptr;
        fnptr = fp;
        using return_type = typename func_traits<Signature*>::return_type;
        return [](Args... args) noexcept(noexcept(fp(std::forward<Args>(args)...)) -> return_type
        {
            return return_type(fnptr(std::forward<Args>(args)...));
        };
    }

    template<typename Callable>
    static auto get(Callable&& c)
    {
        return cast(std::forward<Callable>(c), typename func_traits<Callable>::ptr_type{nullptr});
    }

    template<typename Ret, typename... Args>
    static auto get(Ret (*fp)(Args...))
    {
        return fp;
    }
};

您已收到警告。

您不能在需要函数指针的地方使用std::function。
std::function
键入擦除其类型并允许更多该函数指针,您可以从另一个方向执行。你能让你的方法静态的直接传递它吗?或者你需要Rosen的实例吗?我是否应该发布一个非常粗糙的方法,它做了非常糟糕的事情,但从技术上来说,它肯定地回答了这个问题?@Jarod42刚刚尝试了一个简单的例子,使该方法成为静态的,它就工作了。谢谢也许我稍后会尝试一个更复杂的方法。
void*ex
是传递回调用方函数的不透明cookie,还是用于其他用途?你需要一个闭包来完成这件事,而这正是我所期望的……你测试过这个来看看会发生什么吗?你说得对,这是不可能的。抱歉,Jay,这也行不通。主要问题是编译器“无法将成员函数fn的double(optim::*)(int,double*,void*)转换为double()(int,double,void*)”(对于gr应该是相同的)。错误消息还说“ISO C++禁止接受不合格或括号的非静态成员函数的地址”。换句话说,它只有在成员函数是静态的情况下才起作用。哇,这太糟糕了:请注意,它(希望)会在C++17中崩溃(那时他们会设法禁止constexpr计数器)。
struct Single {
  template<typename R, typename... Args>
  struct Extract {
    std::function<R(Args...)> & get_function(void * ptr) {
        return *(static_cast<std::function<R(Args...)>*>(ptr));
    }
  };
  template<typename R, typename... Args>
  static void * wrap(std::function<R(Args...)> & fn) {
    return &fn;
  }
};
template<std::size_t Num>
struct Multi {
  template<std::size_t I, typename R, typename... Args>
  struct Extract {
    std::function<R(Args...)> & get_function(void * ptr) {
      auto arr = static_cast<std::array<void *, Num> *>(ptr);
      return *(static_cast<std::function<R(Args...)>*>((*arr)[I]));
    }
  };
  template<typename... Fns>
  static void * wrap(Fns &... fns) {
    static_assert(sizeof...(fns) == Num, "Don't lie!");
    std::array<void *, Num> arr = { static_cast<void *>(&fns)... };
    return static_cast<void*>(new std::array<void *, Num>(std::move(arr)));
  }
  static void free_wrap_result(void * ptr) {
    delete (static_cast<std::array<void *, Num>*>(ptr));
  }
};
template<
    std::size_t N,
    typename... Args,
    std::size_t... Is>
auto tuple_remove_impl(
    std::tuple<Args...> const & t,
    std::index_sequence<Is...>) {
  return std::tuple_cat(if_t<N == Is, Ignore, Use<Is>>::from(t)...);
}
template<
    std::size_t N,
    typename... Args>
auto tuple_remove (std::tuple<Args...> const & t) {
  return tuple_remove_impl<N>(t, std::index_sequence_for<Args...>{});
}
struct Ignore {
  template<typename Tuple>
  static std::tuple<> from(Tuple) {
    return {};
  }
};
template<std::size_t N>
struct Use {
  template<typename Tuple>
  static auto from(Tuple t) {
    return std:: make_tuple(std::get<N>(t));
  }
};
template<bool Condition,
         typename Then,
         typename Else>
using if_t = typename std::conditional<
    Condition, Then, Else>::type;
class optim {
    public:
        // ...

        virtual double fn(int n, double *par, void *ex) = 0;
        virtual void gr(int n, double *par, double *gr, void *ex) = 0;

        void minimize(arma::vec &dpar, void *ex) {
            vmmin(... , &fn, &gr, ...);
            // ...
        }
};

class Rosen : public optim {
    public:
        // ...
        double fn(int n, double *par, void *ex);
        void gr(int n, double *par, double *gr, void *ex);

    private:
        // ...
};

// main.cc    
Rosen obj;
obj.minimize(dpar, ex);
#include<tuple>
#include<type_traits>
#include<utility>

// func_traits
template <typename T>
struct func_traits : public func_traits<decltype(&std::remove_reference_t<T>::operator())> {};

template <typename Callable, typename Ret, typename... Args>
struct func_traits<Ret(Callable::*)(Args...) const> {
    using ptr_type = Ret (*) (Args...);
    using return_type =  Ret;

    template<std::size_t i>
    struct arg
    {
        using type = typename std::tuple_element<i, std::tuple<Args...>>::type;
    };

    template<typename Ret2>
    using cast_return_type = Ret2 (*) (Args...);
};

template<typename Ret, typename... Args>
struct func_traits<Ret (&) (Args...)> : public func_traits<Ret (*) (Args...)> {};

template <typename Ret, typename... Args>
struct func_traits<Ret (*) (Args...)>
{
    using ptr_type = Ret (*) (Args...);
    using return_type =  Ret;

    template<std::size_t i>
    struct arg
    {
        using type = typename std::tuple_element<i, std::tuple<Args...>>::type;
    };

    template<typename Ret2>
    using cast_return_type = Ret2 (*) (Args...);
};



// constexpr counter
template <int N>
struct flag
{
    friend constexpr int adl_flag(flag<N>);
    constexpr operator int() { return N; }
};

template <int N>
struct write
{
    friend constexpr int adl_flag(flag<N>) { return N; }
    static constexpr int value = N;
};

template <int N, int = adl_flag(flag<N>{})>
constexpr int read(int, flag<N>, int R = read(0, flag<N + 1>{}))
{
    return R;
}

template <int N>
constexpr int read(float, flag<N>)
{
    return N;
}

template <int N = 0>
constexpr int counter(int R = write<read(0, flag<N>{})>::value)
{
    return R;
}


// fnptr
template<int nonce = counter()>
class fnptr
{
    //these are to make sure fnptr is never constructed
    //technically the first one should be enough, but compilers are not entirely standard conformant
    explicit fnptr() = delete;
    fnptr(const fnptr&) {}
    ~fnptr() = delete;

    template<typename Callable, typename Ret, typename... Args>
    static auto cast(Callable&& c, Ret(*fp)(Args...)) -> decltype(fp)
    {
        using callable_type = std::remove_reference_t<Callable>;
        static callable_type clb{std::forward<Callable>(c)};
        static bool full = false;
        if(full)
        {
            clb.~callable_type();
            new (&clb) decltype(clb){std::forward<Callable>(c)};
        }
        else
            full = true;
        return [](Args... args) noexcept(noexcept(clb(std::forward<Args>(args)...))) -> Ret
        {
            return Ret(clb(std::forward<Args>(args)...));
        };
    }

public:
    template<typename Signature, typename Callable>
    static Signature* cast(Callable&& c)
    {
        return cast(std::forward<Callable>(c), static_cast<Signature*>(nullptr));
    }

    template<typename Signature, typename Ret, typename... Args>
    static auto cast(Ret (*fp)(Args...))
    {
        static decltype(fp) fnptr;
        fnptr = fp;
        using return_type = typename func_traits<Signature*>::return_type;
        return [](Args... args) noexcept(noexcept(fp(std::forward<Args>(args)...)) -> return_type
        {
            return return_type(fnptr(std::forward<Args>(args)...));
        };
    }

    template<typename Callable>
    static auto get(Callable&& c)
    {
        return cast(std::forward<Callable>(c), typename func_traits<Callable>::ptr_type{nullptr});
    }

    template<typename Ret, typename... Args>
    static auto get(Ret (*fp)(Args...))
    {
        return fp;
    }
};
#include<functional>
#include<iostream>

using optimfn = double (int, double*, void*);
using optimgr = void (int, double*, double*, void*);

void test(optimfn* fn, optimgr* gr)
{
    double d;
    fn(42, &d, &d);
    gr(42, &d, &d, &d);
}

int main()
{
    std::function<optimfn> fn = [](int, double*, void*){
        std::cout << "I'm fn" << std::endl;
        return 0.;
    };
    std::function<optimgr> gr = [](int, double*, double*, void*){
        std::cout << "I'm gr" << std::endl;
    };

    test(fnptr<>::get(fn), fnptr<>::get(gr));
}
std::vector<int(*)()> v;
for(int i = 0; i < 10; i++)
    v.push_back(fnptr<>::get([i]{return i;}));  // This will implode