Java 求两个线性等式成立的整数集

Java 求两个线性等式成立的整数集,java,c#,python,algorithm,language-agnostic,Java,C#,Python,Algorithm,Language Agnostic,我可以使用什么算法来查找n1,n2,…,的所有正整数值的集合,n7以下不等式适用 97n1 + 89n2 + 42n3 + 20n4 + 16n5 + 11n6 + 2n7 - 185 > 0 -98n1 - 90n2 - 43n3 - 21n4 - 17n5 - 12n6 - 3n7 + 205 > 0 n1 >= 0, n2 >= 0, n3 >=0. n4 >=0, n5 >=0, n6 >=0, n7 >= 0 例如,一组n1=2,

我可以使用什么算法来查找
n1,n2,…,的所有正整数值的集合,n7
以下不等式适用

97n1 + 89n2 + 42n3 + 20n4 + 16n5 + 11n6 + 2n7 - 185 > 0
-98n1 - 90n2 - 43n3 - 21n4 - 17n5 - 12n6 - 3n7 + 205 > 0
n1 >= 0, n2 >= 0, n3 >=0. n4 >=0, n5 >=0, n6 >=0, n7 >= 0
例如,一组
n1=2,n2=n3=…=n7=0
使不等式为真。如何找出所有其他值集?类似的问题已经发布在网站上

添加::我需要为n个变量(可能很大)概括解决方案。我可以申请什么程序?对于另一个特殊情况n=8

97n1 + 89n2 + 42n3 + 20n4 + 16n5 + 11n6 + 6n7 + 2n8 - 185 > 0
-98n1 - 90n2 - 43n3 - 21n4 - 17n5 - 12n6  - 7 - 3n8 + 205 > 0
n1 >= 0, n2 >= 0, n3 >=0. n4 >=0, n5 >=0, n6 >=0, n7 >= 0, n8 >= 0
Python需要永远的时间
Wolfram Mathematica
揭示了
4015
在不到一分钟的时间内就有解决方案

Length[Solve[{97 n1 + 89 n2 + 42 n3 + 20 n4 + 16 n5 + 11 n6 + 6 n7 + 
     2 n8 - 185 > 0, 
   -98 n1 - 90 n2 - 43 n3 - 21 n4 - 17 n5 - 12 n6 - 7 n7 - 3 n8 + 
     205 > 0,
   n1 >= 0, n2 >= 0, n3 >= 0, n4 >= 0, n5 >= 0, n6 >= 0, n7 >= 0, 
   n8 >= 0}, {n1, n2, n3, n4, n5, n6, n7, n8}, Integers]]

有1013个解决方案,但我不知道解决这个问题的最有效方法


看看第二个不等式,
17*n5
不能大于
205
(否则整个左手边不能为正)。这导致
n5似乎类似于带整数解的线性规划。我认为已经实现了一些算法。

试试看。

< P>在你给的两个例子中,我都注意到了同样的模式。例如,对于第一种情况,如果将两个方程相加,将得到

-n1 - n2 - n3 - n4 - n5 - n6 - n7 + 20 > 0
可以重新排列为

n1 + n2 + n3 + n4 + n5 + n6 + n7 < 20
find_solutions(20)
在0.6秒内找到所有1013个解决方案。类似地,对于第二种情况,它可以在2.3秒内找到所有4015个解决方案。现在,这根本不容易推广,但它表明,使用智能方法,Python或任何其他语言,不必太慢

另一方面,递归允许我们将其推广到任意数量的嵌套循环,但代价是运行速度稍慢

def find_solutions(N, coeffs, depth=0, variables=None, subtotal=None, solutions=None):
    if variables is None:
        solutions = []
        subtotal = [0 for _ in xrange(len(coeffs[0]))]
        variables = [0 for _ in xrange(len(coeffs[0])-1)]
    if depth == len(coeffs[0])-2:
        for v in xrange(N-sum(variables[:depth])):
            conditions = all(
                subtotal[i]+coeffs[i][depth]*v > coeffs[i][-1]
                for i in xrange(len(coeffs))
            )
            if conditions:
                variables[depth] = v
                solutions.append(tuple(variables))
    else:
        for v in xrange(N-sum(variables[:depth])):
            variables[depth] = v
            total = [subtotal[i]+coeffs[i][depth]*v for i in xrange(len(coeffs))]
            find_solutions(N, coeffs, depth+1, variables, total, solutions)
    if depth == 0:
        return solutions
要运行此操作,请为每个方程生成系数并将其传递给函数。记住常数的符号是倒转的

coeffs = [
    [97, 89, 42, 20, 16, 11, 2, 185],
    [-98, -90, -43, -21, -17, -12, -3, -205]
]
solutions = find_solutions(20, coeffs)
print(len(solutions))
这一个在1.6秒内完成n=7的情况,在5.8秒内完成n=8的情况。如果你希望你的n变得非常大,我会研究任何可能的优化,但目前看来还是令人满意的

剩下的问题是,你的方程之和是否总是简化为
n1+n2+。。。nn
。如果不是这样的话,有一个简单的解决方案,但是我选择了不要过早地将代码过度概括到您提供的示例之外


最后,我设想同样的方法可以在Java或C#中实现,而且可能会更快。如果您的一般情况需要更长的时间来解决,我不介意这样做。

Reti43的想法是正确的,但是有一种快速递归解决方案,可以在对不等式限制较少的假设下工作

def solve(smin, smax, coef1, coef2):
    """
    Return a list of lists of non-negative integers `n` that satisfy
    the inequalities,

    sum([coef1[i] * n[i] for i in range(len(coef1)]) > smin
    sum([coef2[i] * n[i] for i in range(len(coef1)]) < smax

    where coef1 and coef2 are equal-length lists of positive integers.
    """
    if smax < 0:
        return []

    n_max = ((smax-1) // coef2[0])
    solutions = []
    if len(coef1) > 1:
        for n0 in range(n_max + 1):
            for solution in solve(smin - n0 * coef1[0],
                                  smax - n0 * coef2[0], 
                                  coef1[1:], coef2[1:]):
                solutions.append([n0] + solution)
    else:
        n_min = max(0, (smin // coef1[0]) + 1)
        for n0 in range(n_min, n_max + 1):
            if n0 * coef1[0] > smin and n0 * coef2[0] < smax:
                solutions.append([n0])
    return solutions
对于这样的长期问题

smin, coef1 = 185, (97, 89, 42, 20, 16, 11, 2)
smax, coef2 = 205, (98, 90, 43, 21, 17, 12, 3)
solns7 = solve(smin, smax, coef1, coef2)
len(solns7)
1013
smin, coef1 = 185, (97, 89, 42, 20, 16, 11, 6, 2)
smax, coef2 = 205, (98, 90, 43, 21, 17, 12, 7, 3)
solns8 = solve(smin, smax, coef1, coef2)
len(solns8)
4015
solutions = solve(185, 205, (97, 89, 42, 20, 16, 11, 6, 2))
len(solutions)
4015
在我的Macbook上,这两个问题都在几毫秒内得到解决。这应该可以很好地扩展到稍大的问题,但从根本上说,系数N的数量是O(2^N)。它实际扩展的程度取决于附加系数的大小-系数越大(与smax smin相比),可能的解决方案越少,运行得越快

更新:通过对链接的讨论,我发现这两个不等式之间的关系是问题结构的一部分。鉴于此,可以给出一个稍微简单的解决方案。下面的代码还包括一些额外的优化,在我的笔记本电脑上,这些优化将8变量情况下的解决方案从88毫秒加速到34毫秒。我在22个变量的例子中尝试了这个方法,在不到一分钟的时间里得到了结果,但是对于数百个变量来说,它永远都不实用

def solve(smin, smax, coef):
    """
    Return a list of lists of non-negative integers `n` that satisfy
    the inequalities,

    sum([coef[i] * n[i] for i in range(len(coef)]) > smin
    sum([(coef[i]+1) * n[i] for i in range(len(coef)]) < smax

    where coef is a list of positive integer coefficients, ordered
    from highest to lowest.
    """
    if smax <= smin:
        return []
    if smin < 0 and smax <= coef[-1]+1:
        return [[0] * len(coef)]

    c0 = coef[0]
    c1 = c0 + 1
    n_max = ((smax-1) // c1)
    solutions = []
    if len(coef) > 1:
        for n0 in range(n_max + 1):
            for solution in solve(smin - n0 * c0,
                                  smax - n0 * c1, 
                                  coef[1:]):
                solutions.append([n0] + solution)
    else:
        n_min = max(0, (smin // c0) + 1)
        for n0 in range(n_min, n_max + 1):
            solutions.append([n0])
    return solutions
此解决方案直接枚举有界区域中的晶格点。由于您需要所有这些解决方案,因此获得这些解决方案所需的时间最多与绑定晶格点的数量成正比,而绑定晶格点的数量随维度(变量)的数量呈指数增长。

(最多13个整数) 以下是在1600个内核上使用gpgpu(opencl)的丑陋蛮力,在9.3毫秒内找到1013(7整数)个解决方案,包括从gpu到cpu内存的阵列下载时间:

编辑:更正了n1、n2、n3,因为它们是1,20400,而不是20,20,20有限

__kernel void solver1(__global __write_only float * subCount){
                        int threadId=get_global_id(0);
                        int ctr=0;
                        int n1=threadId/400;
                        int n2=(threadId/20)%20;
                        int n3=threadId%20;
                        for(int n4=0;n4<=20;n4++) 
                           for(int n5=0;n5<=20;n5++)
                               for(int n6=0;n6<=20;n6++)
                                  for(int n7=0;n7<=20;n7++)
                                      if (
                      (97*n1 + 89*n2 + 42*n3 + 20*n4 + 16*n5 + 11*n6 + 2*n7 - 185 > 0) && 
                      (-98*n1 - 90*n2 - 43*n3 - 21*n4 - 17*n5 - 12*n6 - 3*n7 + 205 > 0))
                                   {ctr++;}
                    subCount[threadId]=ctr;

}
\uuuuuu内核无效解算器1(\uuuuu全局\uuuuu只写浮点*子计数){
int-threadId=get\u-global\u-id(0);
int ctr=0;
int n1=螺纹ID/400;
int n2=(线程ID/20)%20;
int n3=线程ID%20;
对于(int n4=0;n4伪代码:

for each inequation:
    find all real roots of the equivalent equation, i.e. the zero-crossings
    for each interval between two adjacent roots:
        pick any number strictly inside the interval
        evaluate the polynomial in that point
            if the evaluated polimonial is positive:
                add every integer in the interval to the list of solutions to that inequation
                (treat the open-ended intervals outside the extreme roots as special cases, they may contain infinite solutions)
find the integers that are in all the lists of solutions to the individual equations

n
后面的数字是指数吗?这是一个线性不等式吗?使用“c++fortran不等式算法”搜索互联网时有什么结果?你可以通过写下求解不等式所需的步骤来发明自己的算法。找到一组线性不等式是否至少有一个整数解的问题是NP完全问题。“可行解”“整数线性规划”是有帮助的搜索词,但是,正如NP完整性所表明的,你不会得到简单的答案。@ThomasMatthews不,解是线性的。它是关于寻找矩阵方程AX=B的所有特定解,其元素大于零。我将搜索不等式算法并查看。正如我所担心的,解是丑陋的。也许我应该取n’的所有范围的笛卡尔积,一旦你设置了n1,常数就变成205-98n1,所以要探索的n2的边界可以缩小……这就是我在最后提出的观点。还有其他方法可以改进这一点。例如,如果你加上2个原始不等式,你得到的值之和不能超过20。我们可以推广f吗或者n的其他值?例如,我不知道有多少个循环?我知道Wolfram Mathematica中有一个算法。
def solve(smin, smax, coef):
    """
    Return a list of lists of non-negative integers `n` that satisfy
    the inequalities,

    sum([coef[i] * n[i] for i in range(len(coef)]) > smin
    sum([(coef[i]+1) * n[i] for i in range(len(coef)]) < smax

    where coef is a list of positive integer coefficients, ordered
    from highest to lowest.
    """
    if smax <= smin:
        return []
    if smin < 0 and smax <= coef[-1]+1:
        return [[0] * len(coef)]

    c0 = coef[0]
    c1 = c0 + 1
    n_max = ((smax-1) // c1)
    solutions = []
    if len(coef) > 1:
        for n0 in range(n_max + 1):
            for solution in solve(smin - n0 * c0,
                                  smax - n0 * c1, 
                                  coef[1:]):
                solutions.append([n0] + solution)
    else:
        n_min = max(0, (smin // c0) + 1)
        for n0 in range(n_min, n_max + 1):
            solutions.append([n0])
    return solutions
solutions = solve(185, 205, (97, 89, 42, 20, 16, 11, 6, 2))
len(solutions)
4015
__kernel void solver1(__global __write_only float * subCount){
                        int threadId=get_global_id(0);
                        int ctr=0;
                        int n1=threadId/400;
                        int n2=(threadId/20)%20;
                        int n3=threadId%20;
                        for(int n4=0;n4<=20;n4++) 
                           for(int n5=0;n5<=20;n5++)
                               for(int n6=0;n6<=20;n6++)
                                  for(int n7=0;n7<=20;n7++)
                                      if (
                      (97*n1 + 89*n2 + 42*n3 + 20*n4 + 16*n5 + 11*n6 + 2*n7 - 185 > 0) && 
                      (-98*n1 - 90*n2 - 43*n3 - 21*n4 - 17*n5 - 12*n6 - 3*n7 + 205 > 0))
                                   {ctr++;}
                    subCount[threadId]=ctr;

}
  __kernel void solver2(__global __write_only float * subCount){
                        int threadId=get_global_id(0);
                        int ctr=0;
                        int n1=threadId/160000;     int c1n1=97*n1; int c2n1=-98*n1;
                        int n2=(threadId/8000)%20;  int c1n2=89*n2; int c2n2=- 90*n2 ;
                        int n3=(threadId/400)%20;   int c1n3=42*n3; int c2n3=- 43*n3 ;
                        int n4=(threadId/20)%20;    int c1n4=20*n4 ;int c2n4=- 21*n4 ;
                        int n5=threadId%20;         int c1n5=16*n5 ;int c2n5=- 17*n5 ;
                        int t1=c1n1+c1n2+c1n3+c1n4+c1n5;
                        int t2=c2n1+c2n2+c2n3+c2n4+c2n5;
                               for(int n6=0;n6<=20;n6++)
                                  for(int n7=0;n7<=20;n7++)
                                    for(int n8=0;n8<=20;n8++)
                                        if(t1+ 11*n6 + 2*n7+6*n8 > 185  &&  t2 - 12*n6 - 3*n7-7*n8 > -205)
                                                ctr++;
                        subCount[threadId]=ctr;

                }
__kernel void solver3(__global __write_only float * subCount){
                    int threadId=get_global_id(0);
                    int ctr=0;
                    int n1=threadId/160000;     int c1n1=97*n1; int c2n1=-98*n1;
                    int n2=(threadId/8000)%20;  int c1n2=89*n2; int c2n2=- 90*n2 ;
                    int n3=(threadId/400)%20;   int c1n3=42*n3; int c2n3=- 43*n3 ;
                    int n4=(threadId/20)%20;    int c1n4=20*n4 ;int c2n4=- 21*n4 ;
                    int n5=threadId%20;         int c1n5=16*n5 ;int c2n5=- 17*n5 ;
                    int t1=c1n1+c1n2+c1n3+c1n4+c1n5;
                    int t2=c2n1+c2n2+c2n3+c2n4+c2n5;
                    int m=max( max( max( max(n1,n2),n3),n4),n5);
                           for(int n6=0;n6<=20-m;n6++)
                              for(int n7=0;n7<=20-m-n6;n7++)
                                for(int n8=0;n8<=20-m-n6-n7;n8++)
                                    for(int n9=0;n9<=20-m-n6-n7-n8;n9++)
                                        if(t1+ 11*n6 + 2*n7+6*n8 +3*n9> 185  &&  t2 - 12*n6 - 3*n7-7*n8-4*n9 > -205)
                                            ctr++;
                    subCount[threadId]=ctr;

            }
for each inequation:
    find all real roots of the equivalent equation, i.e. the zero-crossings
    for each interval between two adjacent roots:
        pick any number strictly inside the interval
        evaluate the polynomial in that point
            if the evaluated polimonial is positive:
                add every integer in the interval to the list of solutions to that inequation
                (treat the open-ended intervals outside the extreme roots as special cases, they may contain infinite solutions)
find the integers that are in all the lists of solutions to the individual equations