Python 找出两个(不和谐)波之间的相位差

Python 找出两个(不和谐)波之间的相位差,python,numpy,neural-network,physics,scipy,Python,Numpy,Neural Network,Physics,Scipy,我有两个数据集,列出了两组神经网络在时间t时的平均电压输出,如下所示: A = [-80.0, -80.0, -80.0, -80.0, -80.0, -80.0, -79.58, -79.55, -79.08, -78.95, -78.77, -78.45,-77.75, -77.18, -77.08, -77.18, -77.16, -76.6, -76.34, -76.35] B = [-80.0, -80.0, -80.0, -80.0, -80.0, -80.0, -78.74, -

我有两个数据集,列出了两组神经网络在时间t时的平均电压输出,如下所示:

A = [-80.0, -80.0, -80.0, -80.0, -80.0, -80.0, -79.58, -79.55, -79.08, -78.95, -78.77, -78.45,-77.75, -77.18, -77.08, -77.18, -77.16, -76.6, -76.34, -76.35]

B = [-80.0, -80.0, -80.0, -80.0, -80.0, -80.0, -78.74, -78.65, -78.08, -77.75, -77.31, -76.55, -75.55, -75.18, -75.34, -75.32, -75.43, -74.94, -74.7, -74.68]
当两个神经组件在合理的程度上“同步”时,这意味着它们是相互关联的。我想做的是计算A和B之间的相位差,最好是在整个模拟过程中。由于两个组件不可能完全同相,所以我想将相位差与某个阈值进行比较

这些是非谐振荡器,我不知道它们的函数,只有这些值,所以我不知道如何确定相位或各自的相位差

我正在用Python做这个项目,使用numpy和scipy(这两个程序集是numpy数组)

如有任何建议,将不胜感激

编辑:添加绘图

下面是两个数据集的图形:

也许您正在寻找互相关:

scipy.​signal.​signaltools.correlate(A, B)
互相关中的峰值位置将是相位差的估计值

编辑3:现在更新,我已经查看了真实的数据文件。发现相移为零有两个原因。首先,两个时间序列之间的相移实际上为零。如果在matplotlib图形上水平放大,可以清楚地看到这一点。其次,必须首先对数据进行正则化(最重要的是,减去平均值),否则阵列末端的零填充效应会淹没互相关中的真实信号。在下面的示例中,我通过添加一个人工偏移,然后检查是否正确恢复,来验证我是否找到了“真实”峰值

import numpy, scipy
from scipy.signal import correlate

# Load datasets, taking mean of 100 values in each table row
A = numpy.loadtxt("vb-sync-XReport.txt")[:,1:].mean(axis=1)
B = numpy.loadtxt("vb-sync-YReport.txt")[:,1:].mean(axis=1)

nsamples = A.size

# regularize datasets by subtracting mean and dividing by s.d.
A -= A.mean(); A /= A.std()
B -= B.mean(); B /= B.std()

# Put in an artificial time shift between the two datasets
time_shift = 20
A = numpy.roll(A, time_shift)

# Find cross-correlation
xcorr = correlate(A, B)

# delta time array to match xcorr
dt = numpy.arange(1-nsamples, nsamples)

recovered_time_shift = dt[xcorr.argmax()]

print "Added time shift: %d" % (time_shift)
print "Recovered time shift: %d" % (recovered_time_shift)

# SAMPLE OUTPUT:
# Added time shift: 20
# Recovered time shift: 20
编辑:以下是它如何处理假数据的示例

编辑2:添加了示例的图表

import numpy, scipy
from scipy.signal import square, sawtooth, correlate
from numpy import pi, random

period = 1.0                            # period of oscillations (seconds)
tmax = 10.0                             # length of time series (seconds)
nsamples = 1000
noise_amplitude = 0.6

phase_shift = 0.6*pi                   # in radians

# construct time array
t = numpy.linspace(0.0, tmax, nsamples, endpoint=False)

# Signal A is a square wave (plus some noise)
A = square(2.0*pi*t/period) + noise_amplitude*random.normal(size=(nsamples,))

# Signal B is a phase-shifted saw wave with the same period
B = -sawtooth(phase_shift + 2.0*pi*t/period) + noise_amplitude*random.normal(size=(nsamples,))

# calculate cross correlation of the two signals
xcorr = correlate(A, B)

# The peak of the cross-correlation gives the shift between the two signals
# The xcorr array goes from -nsamples to nsamples
dt = numpy.linspace(-t[-1], t[-1], 2*nsamples-1)
recovered_time_shift = dt[xcorr.argmax()]

# force the phase shift to be in [-pi:pi]
recovered_phase_shift = 2*pi*(((0.5 + recovered_time_shift/period) % 1.0) - 0.5)

relative_error = (recovered_phase_shift - phase_shift)/(2*pi)

print "Original phase shift: %.2f pi" % (phase_shift/pi)
print "Recovered phase shift: %.2f pi" % (recovered_phase_shift/pi)
print "Relative error: %.4f" % (relative_error)

# OUTPUT:
# Original phase shift: 0.25 pi
# Recovered phase shift: 0.24 pi
# Relative error: -0.0050

# Now graph the signals and the cross-correlation

from pyx import canvas, graph, text, color, style, trafo, unit
from pyx.graph import axis, key

text.set(mode="latex")
text.preamble(r"\usepackage{txfonts}")
figwidth = 12
gkey = key.key(pos=None, hpos=0.05, vpos=0.8)
xaxis = axis.linear(title=r"Time, \(t\)")
yaxis = axis.linear(title="Signal", min=-5, max=17)
g = graph.graphxy(width=figwidth, x=xaxis, y=yaxis, key=gkey)
plotdata = [graph.data.values(x=t, y=signal+offset, title=label) for label, signal, offset in (r"\(A(t) = \mathrm{square}(2\pi t/T)\)", A, 2.5), (r"\(B(t) = \mathrm{sawtooth}(\phi + 2 \pi t/T)\)", B, -2.5)]
linestyles = [style.linestyle.solid, style.linejoin.round, style.linewidth.Thick, color.gradient.Rainbow, color.transparency(0.5)]
plotstyles = [graph.style.line(linestyles)]
g.plot(plotdata, plotstyles)
g.text(10*unit.x_pt, 0.56*figwidth, r"\textbf{Cross correlation of noisy anharmonic signals}")
g.text(10*unit.x_pt, 0.33*figwidth, "Phase shift: input \(\phi = %.2f \,\pi\), recovered \(\phi = %.2f \,\pi\)" % (phase_shift/pi, recovered_phase_shift/pi))
xxaxis = axis.linear(title=r"Time Lag, \(\Delta t\)", min=-1.5, max=1.5)
yyaxis = axis.linear(title=r"\(A(t) \star B(t)\)")
gg = graph.graphxy(width=0.2*figwidth, x=xxaxis, y=yyaxis)
plotstyles = [graph.style.line(linestyles + [color.rgb(0.2,0.5,0.2)])]
gg.plot(graph.data.values(x=dt, y=xcorr), plotstyles)
gg.stroke(gg.xgridpath(recovered_time_shift), [style.linewidth.THIck, color.gray(0.5), color.transparency(0.7)])
ggtrafos = [trafo.translate(0.75*figwidth, 0.45*figwidth)]
g.insert(gg, ggtrafos)
g.writePDFfile("so-xcorr-pyx")


所以它工作得很好,即使是非常嘈杂的数据和非常非谐的波

@deprecated的评论正是这个问题的答案,当涉及到纯代码python解决方案时。这些评论非常有价值,但我觉得我应该为那些在神经网络的特定环境中寻找答案的人们添加一些注释

当你像我一样计算大型神经元集合的平均膜电位时,相关性会相对较弱。首先,你要看的是单个组件的尖峰序列、潜伏期或兴奋性(即突触效能)之间的相关性。通过观察电位超过某个阈值的点,可以相对容易地发现这一点。Scipy的尖峰序列相关函数将显示神经元或神经组件之间相互依赖的更详细的图片,当你给它尖峰序列时,与实际电位相反。您还可以查看Brian的统计模块,可在此处找到:


至于相位差,这可能是一个不充分的测量,因为神经元不是谐振子。如果你想对相位进行非常精确的测量,最好看看非谐振荡器的同步。描述这类振荡器的数学模型是Kuramoto模型,在神经元和神经网络方面非常有用。Kuramoto模型、集成和触发同步有大量的文档可供使用,因此我将把它留给它。

我已经尝试过了,即numpy.argmax(signal.correlate(listX,listY))),但它只返回列表中的元素数…奇数。如果你画出自相关阵列,它看起来是什么样子?顺便问一下,你说的“不和谐”是指波形是严格的周期性的,但不是正弦的吗?或者它们不是严格的周期性的?那么,这两个序列的周期是相同的吗?@Dow-对不起,我不理解你发布的数据文件。每行包含20000行,每行由一个整数(行号)和100个浮点组成。除第一行外,每行中绝大多数(>95%)的浮点数都是相同的值(-80.0)。我们应该如何从这些文件中提取您的时间序列A和B?@Dow-您的两个时间序列绝对是“同相”的,即A中的峰值与B中的峰值重合。两者之间没有延迟。我还没有检查它们的周期性。如果您对此感兴趣,可以查找功率谱中的峰值-类似于
numpy.abs(numpy.fft.fft(A))**2
。请检查您的数据文件。他们满是“80”字!