Python 如何改变';成本';这条路怎么走?

Python 如何改变';成本';这条路怎么走?,python,path-finding,a-star,motion-planning,Python,Path Finding,A Star,Motion Planning,我正在阅读关于星型算法的python代码。对我来说,我理解这个算法是如何工作的,但是当我谈到代码时,我得到了一些令人困惑的东西,直到我理解为止。我希望能够在这里更改路径的成本。我的意思是,在计算最佳路径时,我需要能够设置每个像素的成本,但我不知道在哪里做。我有2条路径,我希望算法选择底部路径,因为顶部路径的代价。我该怎么做 路径的图像。我希望算法选择底部的一个 算法的完整代码: """ A* grid planning author: Atsushi Sakai(@Atsushi_twi)

我正在阅读关于星型算法的python代码。对我来说,我理解这个算法是如何工作的,但是当我谈到代码时,我得到了一些令人困惑的东西,直到我理解为止。我希望能够在这里更改路径的成本。我的意思是,在计算最佳路径时,我需要能够设置每个像素的成本,但我不知道在哪里做。我有2条路径,我希望算法选择底部路径,因为顶部路径的代价。我该怎么做

路径的图像。我希望算法选择底部的一个

算法的完整代码:

"""

A* grid planning

author: Atsushi Sakai(@Atsushi_twi)
        Nikos Kanargias (nkana@tee.gr)

See Wikipedia article (https://en.wikipedia.org/wiki/A*_search_algorithm)

"""

import math

import matplotlib.pyplot as plt

show_animation = True


class AStarPlanner:

    def __init__(self, ox, oy, reso, rr):
        """
        Initialize grid map for a star planning

        ox: x position list of Obstacles [m]
        oy: y position list of Obstacles [m]
        reso: grid resolution [m]
        rr: robot radius[m]
        """

        self.reso = reso
        self.rr = rr
        self.calc_obstacle_map(ox, oy)
        self.motion = self.get_motion_model()

    class Node:
        def __init__(self, x, y, cost, pind):
            self.x = x  # index of grid
            self.y = y  # index of grid
            self.cost = cost
            self.pind = pind

        def __str__(self):
            return str(self.x) + "," + str(self.y) + "," + str(
                self.cost) + "," + str(self.pind)

    def planning(self, sx, sy, gx, gy):
        """
        A star path search

        input:
            sx: start x position [m]
            sy: start y position [m]
            gx: goal x position [m]
            gy: goal y position [m]

        output:
            rx: x position list of the final path
            ry: y position list of the final path
        """

        nstart = self.Node(self.calc_xyindex(sx, self.minx),
                           self.calc_xyindex(sy, self.miny), 0.0, -1)
        ngoal = self.Node(self.calc_xyindex(gx, self.minx),
                          self.calc_xyindex(gy, self.miny), 0.0, -1)

        open_set, closed_set = dict(), dict()
        open_set[self.calc_grid_index(nstart)] = nstart

        while 1:
            if len(open_set) == 0:
                print("Open set is empty..")
                break

            c_id = min(
                open_set,
                key=lambda o: open_set[o].cost + self.calc_heuristic(ngoal,
                                                                     open_set[
                                                                         o]))
            current = open_set[c_id]

            # show graph
            if show_animation:  # pragma: no cover
                plt.plot(self.calc_grid_position(current.x, self.minx),
                         self.calc_grid_position(current.y, self.miny), "xc")
                # for stopping simulation with the esc key.
                plt.gcf().canvas.mpl_connect('key_release_event',
                                             lambda event: [exit(
                                                 0) if event.key == 'escape' else None])
                if len(closed_set.keys()) % 10 == 0:
                    plt.pause(0.001)

            if current.x == ngoal.x and current.y == ngoal.y:
                print("Find goal")
                ngoal.pind = current.pind
                ngoal.cost = current.cost
                break

            # Remove the item from the open set
            del open_set[c_id]

            # Add it to the closed set
            closed_set[c_id] = current

            # expand_grid search grid based on motion model
            for i, _ in enumerate(self.motion):
                node = self.Node(current.x + self.motion[i][0],
                                 current.y + self.motion[i][1],
                                 current.cost + self.motion[i][2], c_id)
                n_id = self.calc_grid_index(node)

                # If the node is not safe, do nothing
                if not self.verify_node(node):
                    continue

                if n_id in closed_set:
                    continue

                if n_id not in open_set:
                    open_set[n_id] = node  # discovered a new node
                else:
                    if open_set[n_id].cost > node.cost:
                        # This path is the best until now. record it
                        open_set[n_id] = node

        rx, ry = self.calc_final_path(ngoal, closed_set)

        return rx, ry

    def calc_final_path(self, ngoal, closedset):
        # generate final course
        rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [
            self.calc_grid_position(ngoal.y, self.miny)]
        pind = ngoal.pind
        while pind != -1:
            n = closedset[pind]
            rx.append(self.calc_grid_position(n.x, self.minx))
            ry.append(self.calc_grid_position(n.y, self.miny))
            pind = n.pind

        return rx, ry

    @staticmethod
    def calc_heuristic(n1, n2):
        w = 1.0  # weight of heuristic
        d = w * math.hypot(n1.x - n2.x, n1.y - n2.y)
        return d

    def calc_grid_position(self, index, minp):
        """
        calc grid position

        :param index:
        :param minp:
        :return:
        """
        pos = index * self.reso + minp
        return pos

    def calc_xyindex(self, position, min_pos):
        return round((position - min_pos) / self.reso)

    def calc_grid_index(self, node):
        return (node.y - self.miny) * self.xwidth + (node.x - self.minx)

    def verify_node(self, node):
        px = self.calc_grid_position(node.x, self.minx)
        py = self.calc_grid_position(node.y, self.miny)

        if px < self.minx:
            return False
        elif py < self.miny:
            return False
        elif px >= self.maxx:
            return False
        elif py >= self.maxy:
            return False

        # collision check
        if self.obmap[node.x][node.y]:
            return False

        return True

    def calc_obstacle_map(self, ox, oy):

        self.minx = round(min(ox))
        self.miny = round(min(oy))
        self.maxx = round(max(ox))
        self.maxy = round(max(oy))
        print("minx:", self.minx)
        print("miny:", self.miny)
        print("maxx:", self.maxx)
        print("maxy:", self.maxy)

        self.xwidth = round((self.maxx - self.minx) / self.reso)
        self.ywidth = round((self.maxy - self.miny) / self.reso)
        print("xwidth:", self.xwidth)
        print("ywidth:", self.ywidth)

        # obstacle map generation
        self.obmap = [[False for i in range(self.ywidth)]
                      for i in range(self.xwidth)]
        for ix in range(self.xwidth):
            x = self.calc_grid_position(ix, self.minx)
            for iy in range(self.ywidth):
                y = self.calc_grid_position(iy, self.miny)
                for iox, ioy in zip(ox, oy):
                    d = math.hypot(iox - x, ioy - y)
                    if d <= self.rr:
                        self.obmap[ix][iy] = True
                        break

    @staticmethod
    def get_motion_model():
        # dx, dy, cost
        motion = [[1, 0, 1],
                  [0, 1, 1],
                  [-1, 0, 1],
                  [0, -1, 1],
                  [-1, -1, math.sqrt(2)],
                  [-1, 1, math.sqrt(2)],
                  [1, -1, math.sqrt(2)],
                  [1, 1, math.sqrt(2)]]

        return motion


def main():
    print(__file__ + " start!!")

    # start and goal position
    sx = 1.0  # [m]
    sy = 1.0  # [m]
    gx = 50.0  # [m]
    gy = 50.0  # [m]
    grid_size = 10.0  # [m]
    robot_radius = 1.0  # [m]

    # set obstacle positions
    ox, oy = [], []
    for i in range(-10, 60):
        ox.append(i)
        oy.append(-10.0)
    for i in range(-10, 60):
        ox.append(60.0)
        oy.append(i)
    for i in range(-10, 61):
        ox.append(i)
        oy.append(60.0)
    for i in range(-10, 61):
        ox.append(-10.0)
        oy.append(i)
    for i in range(-10, 40):
        ox.append(20.0)
        oy.append(i)
    for i in range(0, 10):
        ox.append(40.0)
        oy.append(i)
    for i in range(0, 40):
        ox.append(40.0)
        oy.append(60.0 - i)

    if show_animation:  # pragma: no cover
        plt.plot(ox, oy, ".k")
        plt.plot(sx, sy, "og")
        plt.plot(gx, gy, "xb")
        plt.grid(True)
        plt.axis("equal")

    a_star = AStarPlanner(ox, oy, grid_size, robot_radius)
    rx, ry = a_star.planning(sx, sy, gx, gy)

    if show_animation:  # pragma: no cover
        plt.plot(rx, ry, "-r")
        plt.show()
        plt.pause(0.001)


if __name__ == '__main__':
    main()
“”“
A*电网规划
作者:酒井Atsushi(@Atsushi_twi)
尼科斯·卡纳里亚斯(nkana@tee.gr)
参见维基百科文章(https://en.wikipedia.org/wiki/A*_搜索(U算法)
"""
输入数学
将matplotlib.pyplot作为plt导入
显示动画=真
阿斯塔普兰纳级:
定义初始值(自身、牛、oy、reso、rr):
"""
初始化星图规划的栅格地图
ox:x障碍物位置列表[m]
oy:y位置障碍物列表[m]
分辨率:网格分辨率[m]
rr:机器人半径[m]
"""
self.reso=reso
self.rr=rr
自我计算障碍地图(ox,oy)
self.motion=self.get\u motion\u model()
类节点:
定义初始值(self、x、y、cost、pind):
self.x=x#网格索引
self.y=y#网格索引
自我成本=成本
self.pind=pind
定义(自我):
返回str(self.x)+“,”+str(self.y)+“,”+str(
self.cost)+“,”+str(self.pind)
def计划(自我、sx、sy、gx、gy):
"""
星径搜索
输入:
sx:开始x位置[m]
sy:开始y位置[m]
gx:目标x位置[m]
gy:目标y位置[m]
输出:
rx:x最终路径的位置列表
y:最终路径的y位置列表
"""
nstart=self.Node(self.calc_xyindex(sx,self.minx),
自计算指数(sy,self.miny),0.0,-1)
ngoal=self.Node(self.calc_xyindex(gx,self.minx),
自计算指数(gy,自计算指数),0.0,-1)
打开集合,关闭集合=dict(),dict()
开放集[自计算网格索引(nstart)]=nstart
而1:
如果len(open_set)==0:
打印(“打开集为空…”
打破
c_id=min(
开放集,
key=lambda o:open_set[o]。成本+自身。计算启发式(ngoal,
开放集[
o] ))
当前=打开\u集[c\u id]
#显示图形
如果显示动画:#杂注:无封面
plt.绘图(自计算网格位置(当前x、自最小x),
自计算网格位置(当前y、自最小),“xc”)
#用于使用esc键停止模拟。
plt.gcf().canvas.mpl\u connect('key\u release\u event',
lambda事件:[退出](
0)如果event.key=='escape'否则无])
如果len(closed_set.keys())%10==0:
plt.暂停(0.001)
如果当前.x==ngoal.x且当前.y==ngoal.y:
打印(“查找目标”)
ngoal.pind=当前的.pind
ngoal.cost=当前成本
打破
#从打开的集合中删除该项
del open_set[c_id]
#将其添加到闭合集
闭合集[c_id]=当前
#基于运动模型扩展网格搜索网格
对于i,在枚举(自运动)中:
node=self.node(当前.x+self.motion[i][0],
当前.y+自运动[i][1],
当前成本+自动运动[i][2],c_id)
n\u id=self.calc\u grid\u索引(节点)
#如果节点不安全,请不要执行任何操作
如果不是self.verify_节点(node):
持续
如果n_id位于闭合_集中:
持续
如果n_id不在open_集合中:
打开_集[n_id]=节点#发现一个新节点
其他:
如果打开\u集[n\u id]。成本>节点成本:
#这条路是迄今为止最好的。记录下来
打开\u集[n\u id]=节点
rx,ry=自计算最终路径(非高斯,闭合集)
返回rx,ry
def calc_最终路径(自、非通用、关闭集):
#生成最终课程
rx,ry=[self.calc\u grid\u位置(ngoal.x,self.minx)][
自计算网格位置(ngoal.y,self.miny)]
pind=ngoal.pind
而品脱!=-1:
n=关闭设置[pind]
附加(自计算网格位置(n.x,自最小))
y.append(自计算网格位置(n.y,自最小))
品脱
返回rx,ry
@静力学方法
def calc_启发式(n1,n2):
w=1.0#启发式权重
d=w*数学正压(n1.x-n2.x,n1.y-n2.y)
返回d
def calc_网格位置(自、索引、minp):
"""
计算网格位置
:参数索引:
:param minp:
:返回:
"""
pos=索引*self.reso+minp
返回位置
def校准指数(自身、位置、最小位置):
返回回合((位置-最小位置)/自我决议)
def计算网格索引(自身,节点):
返回(node.y-self.miny)*self.xwidth+(node.x-self.minx)
def验证_节点(自身,节点):
px=自计算网格位置(node.x,self.minx)
py=自计算网格位置(node.y,self.miny)
如果px # expand_grid search grid based on motion model
        for i, _ in enumerate(self.motion):
            cost = 0
            if(current.x + self.motion[i][0] >= 45 and (current.x + self.motion[i][0]) <= 55 and current.y + self.motion[i][1] >= 20 and current.y + self.motion[i][1] <= 31):
                cost = 15

            node = self.Node(current.x + self.motion[i][0],
                             current.y + self.motion[i][1],
                             current.cost + self.motion[i][2] + cost, c_id)
            n_id = self.calc_grid_index(node)