在Python中获取矩阵/列表中的所有对角线

在Python中获取矩阵/列表中的所有对角线,python,matrix,diagonal,Python,Matrix,Diagonal,我正在寻找一种Pythonic方法来获得(正方形)矩阵的所有对角线,表示为列表列表 假设我有以下矩阵: matrix = [[-2, 5, 3, 2], [ 9, -6, 5, 1], [ 3, 2, 7, 3], [-1, 8, -4, 8]] 那么大对角线就很容易了: l = len(matrix[0]) print [matrix[i][i] for i in range(l)] #

我正在寻找一种Pythonic方法来获得(正方形)矩阵的所有对角线,表示为列表列表

假设我有以下矩阵:

matrix = [[-2,  5,  3,  2],
          [ 9, -6,  5,  1],
          [ 3,  2,  7,  3],
          [-1,  8, -4,  8]]
那么大对角线就很容易了:

l = len(matrix[0])
print [matrix[i][i] for i in range(l)]              # [-2, -6, 7,  8]
print [matrix[l-1-i][i] for i in range(l-1,-1,-1)]  # [ 2,  5, 2, -1]
但是我很难想出一个方法来生成所有的对角线。我想要的输出是:

[[-2], [9, 5], [3,-6, 3], [-1, 2, 5, 2], [8, 7, 1], [-4, 3], [8],
 [2], [3,1], [5, 5, 3], [-2, -6, 7, 8], [9, 2, -4], [3, 8], [-1]]

从向上向右倾斜的对角线开始

如果(x,y)是矩阵内的直角坐标,则需要在坐标方案(p,q)之间进行变换,其中p是对角线的编号,q是沿对角线的索引。(因此p=0是[-2]对角线,p=1是[9,5]对角线,p=2是[3,-6,3]对角线,依此类推。)

要将a(p,q)转换为a(x,y),可以使用:

x = q
y = p - q
尝试插入p和q的值,看看这是如何工作的

现在你只需循环。。。对于p,从0到2N-1,q从max(0,p-N+1)到min(p,N-1)。将p、q转换为x、y并打印

然后,对于其他对角线,重复循环,但使用不同的变换:

x = N - 1 - q
y = p - q
(这实际上只是左右翻转矩阵。)


很抱歉,我没有用Python编写此代码。:-)

从向上向右倾斜的对角线开始

如果(x,y)是矩阵内的直角坐标,则需要在坐标方案(p,q)之间进行变换,其中p是对角线的编号,q是沿对角线的索引。(因此p=0是[-2]对角线,p=1是[9,5]对角线,p=2是[3,-6,3]对角线,依此类推。)

要将a(p,q)转换为a(x,y),可以使用:

x = q
y = p - q
尝试插入p和q的值,看看这是如何工作的

现在你只需循环。。。对于p,从0到2N-1,q从max(0,p-N+1)到min(p,N-1)。将p、q转换为x、y并打印

然后,对于其他对角线,重复循环,但使用不同的变换:

x = N - 1 - q
y = p - q
(这实际上只是左右翻转矩阵。)


很抱歉,我没有用Python编写此代码。:-)

也许有比下面更好的方法,但我还不太熟悉:

import numpy as np

matrix = np.array(
         [[-2,  5,  3,  2],
          [ 9, -6,  5,  1],
          [ 3,  2,  7,  3],
          [-1,  8, -4,  8]])

diags = [matrix[::-1,:].diagonal(i) for i in range(-3,4)]
diags.extend(matrix.diagonal(i) for i in range(3,-4,-1))
print [n.tolist() for n in diags]
输出
编辑:更新以概括任何矩阵大小

import numpy as np

# Alter dimensions as needed
x,y = 3,4

# create a default array of specified dimensions
a = np.arange(x*y).reshape(x,y)
print a
print

# a.diagonal returns the top-left-to-lower-right diagonal "i"
# according to this diagram:
#
#  0  1  2  3  4 ...
# -1  0  1  2  3
# -2 -1  0  1  2
# -3 -2 -1  0  1
#  :
#
# You wanted lower-left-to-upper-right and upper-left-to-lower-right diagonals.
#
# The syntax a[slice,slice] returns a new array with elements from the sliced ranges,
# where "slice" is Python's [start[:stop[:step]] format.

# "::-1" returns the rows in reverse. ":" returns the columns as is,
# effectively vertically mirroring the original array so the wanted diagonals are
# lower-right-to-uppper-left.
#
# Then a list comprehension is used to collect all the diagonals.  The range
# is -x+1 to y (exclusive of y), so for a matrix like the example above
# (x,y) = (4,5) = -3 to 4.
diags = [a[::-1,:].diagonal(i) for i in range(-a.shape[0]+1,a.shape[1])]

# Now back to the original array to get the upper-left-to-lower-right diagonals,
# starting from the right, so the range needed for shape (x,y) was y-1 to -x+1 descending.
diags.extend(a.diagonal(i) for i in range(a.shape[1]-1,-a.shape[0],-1))

# Another list comp to convert back to Python lists from numpy arrays,
# so it prints what you requested.
print [n.tolist() for n in diags]
输出
也许有比下面更好的方法,但我还不太熟悉:

import numpy as np

matrix = np.array(
         [[-2,  5,  3,  2],
          [ 9, -6,  5,  1],
          [ 3,  2,  7,  3],
          [-1,  8, -4,  8]])

diags = [matrix[::-1,:].diagonal(i) for i in range(-3,4)]
diags.extend(matrix.diagonal(i) for i in range(3,-4,-1))
print [n.tolist() for n in diags]
输出
编辑:更新以概括任何矩阵大小

import numpy as np

# Alter dimensions as needed
x,y = 3,4

# create a default array of specified dimensions
a = np.arange(x*y).reshape(x,y)
print a
print

# a.diagonal returns the top-left-to-lower-right diagonal "i"
# according to this diagram:
#
#  0  1  2  3  4 ...
# -1  0  1  2  3
# -2 -1  0  1  2
# -3 -2 -1  0  1
#  :
#
# You wanted lower-left-to-upper-right and upper-left-to-lower-right diagonals.
#
# The syntax a[slice,slice] returns a new array with elements from the sliced ranges,
# where "slice" is Python's [start[:stop[:step]] format.

# "::-1" returns the rows in reverse. ":" returns the columns as is,
# effectively vertically mirroring the original array so the wanted diagonals are
# lower-right-to-uppper-left.
#
# Then a list comprehension is used to collect all the diagonals.  The range
# is -x+1 to y (exclusive of y), so for a matrix like the example above
# (x,y) = (4,5) = -3 to 4.
diags = [a[::-1,:].diagonal(i) for i in range(-a.shape[0]+1,a.shape[1])]

# Now back to the original array to get the upper-left-to-lower-right diagonals,
# starting from the right, so the range needed for shape (x,y) was y-1 to -x+1 descending.
diags.extend(a.diagonal(i) for i in range(a.shape[1]-1,-a.shape[0],-1))

# Another list comp to convert back to Python lists from numpy arrays,
# so it prints what you requested.
print [n.tolist() for n in diags]
输出 这是谁问的

我首先制作简单的函数来复制任意矩形矩阵的行或列

def get_rows(grid):
    return [[c for c in r] for r in grid]

def get_cols(grid):
    return zip(*grid)
使用这两个函数,我通过在每行的开始/结束处添加一个递增/递减缓冲区来获得对角线。然后,我得到这个缓冲网格的列,然后删除每个列上的缓冲区。(工业工程)

这是谁问的

我首先制作简单的函数来复制任意矩形矩阵的行或列

def get_rows(grid):
    return [[c for c in r] for r in grid]

def get_cols(grid):
    return zip(*grid)
使用这两个函数,我通过在每行的开始/结束处添加一个递增/递减缓冲区来获得对角线。然后,我得到这个缓冲网格的列,然后删除每个列上的缓冲区。(工业工程)


这仅适用于宽度和高度相等的矩阵。 但它也不依赖任何第三方

matrix = [[11, 2, 4],[4, 5, 6],[10, 8, -12]]

# only works for diagnoals of equal width and height
def forward_diagonal(matrix):
    if not isinstance(matrix, list):
        raise TypeError("Must be of type list")

    results = []
    x = 0
    for k, row in enumerate(matrix):
        # next diag is (x + 1, y + 1)
        for i, elm in enumerate(row):

            if i == 0 and k == 0:
                results.append(elm)
                break
            if (x + 1 == i):
                results.append(elm)
                x = i
                break
    return results

print 'forward diagnoals', forward_diagonal(matrix)

这仅适用于宽度和高度相等的矩阵。 但它也不依赖任何第三方

matrix = [[11, 2, 4],[4, 5, 6],[10, 8, -12]]

# only works for diagnoals of equal width and height
def forward_diagonal(matrix):
    if not isinstance(matrix, list):
        raise TypeError("Must be of type list")

    results = []
    x = 0
    for k, row in enumerate(matrix):
        # next diag is (x + 1, y + 1)
        for i, elm in enumerate(row):

            if i == 0 and k == 0:
                results.append(elm)
                break
            if (x + 1 == i):
                results.append(elm)
                x = i
                break
    return results

print 'forward diagnoals', forward_diagonal(matrix)

对于这个问题,我遇到了另一个有趣的解决方案。 通过查看x和y的组合,可以立即发现行、列、前向和后向对角线

Column = x     Row = y        F-Diag = x+y   B-Diag = x-y     B-Diag` = x-y-MIN 
  | 0  1  2      | 0  1  2      | 0  1  2      | 0  1  2        | 0  1  2     
--|---------   --|---------   --|---------   --|---------     --|---------    
0 | 0  1  2    0 | 0  0  0    0 | 0  1  2    0 | 0  1  2      0 | 2  3  4     
1 | 0  1  2    1 | 1  1  1    1 | 1  2  3    1 |-1  0  1      1 | 1  2  3     
2 | 0  1  2    2 | 2  2  2    2 | 2  3  4    2 |-2 -1  0      2 | 0  1  2     
从图中可以看出,使用这些方程,每个对角线和轴都是唯一可识别的。从每个表中获取每个唯一的编号,并为该标识符创建一个容器

请注意,后向对角线已偏移为从零索引开始,且前向对角线的长度始终等于后向对角线的长度

test = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]

max_col = len(test[0])
max_row = len(test)
cols = [[] for _ in range(max_col)]
rows = [[] for _ in range(max_row)]
fdiag = [[] for _ in range(max_row + max_col - 1)]
bdiag = [[] for _ in range(len(fdiag))]
min_bdiag = -max_row + 1

for x in range(max_col):
    for y in range(max_row):
        cols[x].append(test[y][x])
        rows[y].append(test[y][x])
        fdiag[x+y].append(test[y][x])
        bdiag[x-y-min_bdiag].append(test[y][x])

print(cols)
print(rows)
print(fdiag)
print(bdiag)
哪个会打印

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
[[1], [2, 4], [3, 5, 7], [6, 8, 10], [9, 11], [12]]
[[10], [7, 11], [4, 8, 12], [1, 5, 9], [2, 6], [3]]

对于这个问题,我遇到了另一个有趣的解决方案。 通过查看x和y的组合,可以立即发现行、列、前向和后向对角线

Column = x     Row = y        F-Diag = x+y   B-Diag = x-y     B-Diag` = x-y-MIN 
  | 0  1  2      | 0  1  2      | 0  1  2      | 0  1  2        | 0  1  2     
--|---------   --|---------   --|---------   --|---------     --|---------    
0 | 0  1  2    0 | 0  0  0    0 | 0  1  2    0 | 0  1  2      0 | 2  3  4     
1 | 0  1  2    1 | 1  1  1    1 | 1  2  3    1 |-1  0  1      1 | 1  2  3     
2 | 0  1  2    2 | 2  2  2    2 | 2  3  4    2 |-2 -1  0      2 | 0  1  2     
从图中可以看出,使用这些方程,每个对角线和轴都是唯一可识别的。从每个表中获取每个唯一的编号,并为该标识符创建一个容器

请注意,后向对角线已偏移为从零索引开始,且前向对角线的长度始终等于后向对角线的长度

test = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]

max_col = len(test[0])
max_row = len(test)
cols = [[] for _ in range(max_col)]
rows = [[] for _ in range(max_row)]
fdiag = [[] for _ in range(max_row + max_col - 1)]
bdiag = [[] for _ in range(len(fdiag))]
min_bdiag = -max_row + 1

for x in range(max_col):
    for y in range(max_row):
        cols[x].append(test[y][x])
        rows[y].append(test[y][x])
        fdiag[x+y].append(test[y][x])
        bdiag[x-y-min_bdiag].append(test[y][x])

print(cols)
print(rows)
print(fdiag)
print(bdiag)
哪个会打印

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
[[1], [2, 4], [3, 5, 7], [6, 8, 10], [9, 11], [12]]
[[10], [7, 11], [4, 8, 12], [1, 5, 9], [2, 6], [3]]

我最近重新发明了这个轮子。下面是一种易于重用/扩展的方法,用于在正方形列表中查找对角线:

def get_diagonals(grid, bltr = True):
  dim = len(grid)
  assert dim == len(grid[0])
  return_grid = [[] for total in xrange(2 * len(grid) - 1)]
  for row in xrange(len(grid)):
    for col in xrange(len(grid[row])):
      if bltr: return_grid[row + col].append(grid[col][row])
      else:    return_grid[col - row + (dim - 1)].append(grid[row][col])
  return return_grid
假设列表索引:

00 01 02 03

10111213

2021223

30 31 32 33

然后设置
bltr=True
(默认值),返回从左下到右上的对角线,即

00           # row + col == 0
10 01        # row + col == 1
20 11 02     # row + col == 2
30 21 12 03  # row + col == 3
31 22 13     # row + col == 4
32 23        # row + col == 5
33           # row + col == 6
30            # (col - row) == -3
20 31         # (col - row) == -2
10 21 32      # (col - row) == -1
00 11 22 33   # (col - row) == 0
01 12 23      # (col - row) == +1
02 13         # (col - row) == +2
03            # (col - row) == +3
设置bltr=False,返回从左下角到右上角的对角线,即

00           # row + col == 0
10 01        # row + col == 1
20 11 02     # row + col == 2
30 21 12 03  # row + col == 3
31 22 13     # row + col == 4
32 23        # row + col == 5
33           # row + col == 6
30            # (col - row) == -3
20 31         # (col - row) == -2
10 21 32      # (col - row) == -1
00 11 22 33   # (col - row) == 0
01 12 23      # (col - row) == +1
02 13         # (col - row) == +2
03            # (col - row) == +3

使用OP的输入矩阵。

我最近重新发明了这个轮子。下面是一种易于重用/扩展的方法,用于在正方形列表中查找对角线:

def get_diagonals(grid, bltr = True):
  dim = len(grid)
  assert dim == len(grid[0])
  return_grid = [[] for total in xrange(2 * len(grid) - 1)]
  for row in xrange(len(grid)):
    for col in xrange(len(grid[row])):
      if bltr: return_grid[row + col].append(grid[col][row])
      else:    return_grid[col - row + (dim - 1)].append(grid[row][col])
  return return_grid
假设列表索引:

00 01 02 03

10111213

2021223

30 31 32 33

然后设置
bltr=True
(默认值),返回从左下到右上的对角线,即

00           # row + col == 0
10 01        # row + col == 1
20 11 02     # row + col == 2
30 21 12 03  # row + col == 3
31 22 13     # row + col == 4
32 23        # row + col == 5
33           # row + col == 6
30            # (col - row) == -3
20 31         # (col - row) == -2
10 21 32      # (col - row) == -1
00 11 22 33   # (col - row) == 0
01 12 23      # (col - row) == +1
02 13         # (col - row) == +2
03            # (col - row) == +3
设置bltr=False,返回从左下角到右上角的对角线,即

00           # row + col == 0
10 01        # row + col == 1
20 11 02     # row + col == 2
30 21 12 03  # row + col == 3
31 22 13     # row + col == 4
32 23        # row + col == 5
33           # row + col == 6
30            # (col - row) == -3
20 31         # (col - row) == -2
10 21 32      # (col - row) == -1
00 11 22 33   # (col - row) == 0
01 12 23      # (col - row) == +1
02 13         # (col - row) == +2
03            # (col - row) == +3

使用OP的输入矩阵。

基于Nemo上述答案的代码:

def print_diagonals(matrix):
    n = len(matrix)
    diagonals_1 = []  # lower-left-to-upper-right diagonals
    diagonals_2 = []  # upper-left-to-lower-right diagonals
    for p in range(2*n-1):
        diagonals_1.append([matrix[p-q][q] for q in range(max(0, p - n + 1), min(p, n - 1) + 1)])
        diagonals_2.append([matrix[n-p+q-1][q] for q in range(max(0, p - n + 1), min(p, n - 1) + 1)])
    print("lower-left-to-upper-right diagonals: ", diagonals_1)
    print("upper-left-to-lower-right diagonals: ", diagonals_2)


print_diagonals([
    [1, 2, 1, 1],
    [1, 1, 4, 1],
    [1, 3, 1, 6],
    [1, 7, 2, 5],
])

lower-left-to-upper-right diagonals:  [[1], [1, 2], [1, 1, 1], [1, 3, 4, 1], [7, 1, 1], [2, 6], [5]]
upper-left-to-lower-right diagonals:  [[1], [1, 7], [1, 3, 2], [1, 1, 1, 5], [2, 4, 6], [1, 1], [1]]

代码基于Nemo的上述回答:

def print_diagonals(matrix):
    n = len(matrix)
    diagonals_1 = []  # lower-left-to-upper-right diagonals
    diagonals_2 = []  # upper-left-to-lower-right diagonals
    for p in range(2*n-1):
        diagonals_1.append([matrix[p-q][q] for q in range(max(0, p - n + 1), min(p, n - 1) + 1)])
        diagonals_2.append([matrix[n-p+q-1][q] for q in range(max(0, p - n + 1), min(p, n - 1) + 1)])
    print("lower-left-to-upper-right diagonals: ", diagonals_1)
    print("upper-left-to-lower-right diagonals: ", diagonals_2)


print_diagonals([
    [1, 2, 1, 1],
    [1, 1, 4, 1],
    [1, 3, 1, 6],
    [1, 7, 2, 5],
])

lower-left-to-upper-right diagonals:  [[1], [1, 2], [1, 1, 1], [1, 3, 4, 1], [7, 1, 1], [2, 6], [5]]
upper-left-to-lower-right diagonals:  [[1], [1, 7], [1, 3, 2], [1, 1, 1, 5], [2, 4, 6], [1, 1], [1]]

肾盂法

tril = [np.flip(np.fliplr(mat).diagonal(n)) for n in xrange(mat.shape[0])][::-1]
trir = [np.flipud(mat).diagonal(n) for n in xrange(1, mat.shape[0])]
dia = tril + trir

[array([-2]),
 array([9, 5]),
 array([ 3, -6,  3]),
 array([-1,  2,  5,  2]),
 array([8, 7, 1]),
 array([-4,  3]),
 array([8])]
对于纯Python实现,我建议使用1D

W, H = len(mat[0]), len(mat) 
idx = range(W-1) + range(W-1, W*H, W)
rng = range(1, W) + range(H, 0, -1)
rng = map(lambda x: x if (x < min(W, H)) else min(W, H), rng)
dia = [[i + (W-1) * m for m in xrange(r)] for i, r in zip(idx, rng)]
如果要以相反方向返回值:

arr2 = [e for row in zip(*mat[::-1]) for e in row] #Flatten and rotate the matrix by 90°
for d in dia[::-1]:
    print [arr2[e] for e in d]

[2]
[3, 1]
[5, 5, 3]
[-2, -6, 7, 8]
[9, 2, -4]
[3, 8]
[-1]
Numpy方法

tril = [np.flip(np.fliplr(mat).diagonal(n)) for n in xrange(mat.shape[0])][::-1]
trir = [np.flipud(mat).diagonal(n) for n in xrange(1, mat.shape[0])]
dia = tril + trir

[array([-2]),
 array([9, 5]),
 array([ 3, -6,  3]),
 array([-1,  2,  5,  2]),
 array([8, 7, 1]),
 array([-4,  3]),
 array([8])]

肾盂法

tril = [np.flip(np.fliplr(mat).diagonal(n)) for n in xrange(mat.shape[0])][::-1]
trir = [np.flipud(mat).diagonal(n) for n in xrange(1, mat.shape[0])]
dia = tril + trir

[array([-2]),
 array([9, 5]),
 array([ 3, -6,  3]),
 array([-1,  2,  5,  2]),
 array([8, 7, 1]),
 array([-4,  3]),
 array([8])]
对于纯Python实现,我建议使用1D

W, H = len(mat[0]), len(mat) 
idx = range(W-1) + range(W-1, W*H, W)
rng = range(1, W) + range(H, 0, -1)
rng = map(lambda x: x if (x < min(W, H)) else min(W, H), rng)
dia = [[i + (W-1) * m for m in xrange(r)] for i, r in zip(idx, rng)]
如果要返回相反di中的值