R nlme重复测量中的错误

R nlme重复测量中的错误,r,R,我试图运行一个线性混合模型,在57个不同的时间点重复测量。但我一直收到错误信息: Error in solve.default(estimates[dimE[1L] - (p:1), dimE[2L] - (p:1), drop = FALSE]) : 系统在计算上是奇异的:倒数条件数=7.7782e-18 这是什么意思 我的代码是这样的: model.dataset = data.frame(TimepointM=timepoint,SubjectM=sample,GeneM=gene)

我试图运行一个线性混合模型,在57个不同的时间点重复测量。但我一直收到错误信息:

Error in solve.default(estimates[dimE[1L] - (p:1), dimE[2L] - (p:1), drop = FALSE]) : 
系统在计算上是奇异的:倒数条件数=7.7782e-18

这是什么意思

我的代码是这样的:

model.dataset = data.frame(TimepointM=timepoint,SubjectM=sample,GeneM=gene)
library("nlme")   
model = lme(score ~ TimepointM + GeneM,data=model.dataset,random = ~1|SubjectM)    
以下是数据:

score = c(2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,6,7,2,-3,11,14,1,7,6,7,2,-3,11,14,1,7,6,2,-3,11,14,1,7,7,2,-3,11,14,1,7,6,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,6,2,-3,11,14,1,7,7,2,-3,11,14,1,7,6,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,6,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,6,7,2,-3,11,14,1,7,6,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7)
timepoint = c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,15,15,15,15,15,15,16,16,16,16,16,16,16,16,17,17,17,17,17,17,18,18,18,18,18,18,19,19,19,19,19,19,19,20,20,20,20,20,20,21,21,21,21,21,21,24,24,24,24,24,24,24,25,25,25,25,25,25,25,27,27,27,27,27,27,28,28,28,28,28,28,29,29,29,29,29,29,30,30,30,30,30,30,30,31,31,31,31,31,31,31,32,32,32,32,32,32,33,33,33,33,33,33,33,33,34,34,34,34,34,34,34,35,35,35,35,35,35,36,36,36,36,36,36,36,37,37,37,37,37,37,38,38,38,38,38,38,39,39,39,39,39,39,39,40,40,40,40,40,40,40,41,41,41,41,41,41,41,41,42,42,42,42,42,42,42,42,43,43,43,43,43,43,44,44,44,44,44,44,44,45,45,45,45,45,45,46,46,46,46,46,46,47,47,47,47,47,47,48,48,48,48,48,48,49,49,49,49,49,49,49,50,50,50,50,50,50,51,51,51,51,51,51,52,52,52,52,52,52,52,53,53,53,53,53,53,53,54,54,54,54,54,54,55,55,55,55,55,55,56,56,56,56,56,56,57,57,57,57,57,57)
sample = c("S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0")
gene =c(24.1215870,-18.8771658,-27.3747309,-41.5740199,26.1561877,-2.7836332,20.8322796,36.5745088,-24.1541743,-11.2362216,4.9042852,7.4230219,155.8663563,16.4465366,-11.7982286,-1.6102783,-35.9559091,27.7909495,-13.9181661,-29.6037658,-68.4297261,-45.0877920,-48.3157529,17.1649982,-26.9084544,19.7358439,-5.8991143,-24.1541743,-23.5960654,13.0780939,-2.7836332,18.6394081,-28.3157487,-49.9186269,-33.7086648,41.6864242,-30.6199654,36.1823804,-36.5745088,-49.9186269,-44.9448864,-4.9042852,-34.3314764,62.3465425,-42.7609951,-11.7982286,-32.2055657,-56.1811080,5.7216661,-17.6296771,4.3857431,-43.6534459,9.6616697,-44.9448864,18.7997599,-12.9902884,109.1064494,7.6750504,-43.6534459,-17.7130611,-25.8433097,5.7216661,-18.5575548,35.2750175,36.1823804,2.3596457,-25.7644526,-55.0574858,15.5302365,-19.4854325,73.3687689,63.1668918,20.8322796,16.5175201,-22.5438960,-28.0905540,15.5302365,7.4230219,39.5062602,107.4657509,36.1823804,-23.5964573,-45.0877920,-43.8212642,4.0869043,-40.8266205,26.3375068,13.1572292,-25.9561030,-40.2569571,-52.8102415,2.4521426,-49.1775202,246.1047731,36.1823804,11.7982286,-35.4261223,-26.9669318,-2.4521426,-38.0429873,38.5656349,9.8679219,16.5175201,8.0513914,-42.6976421,26.9735686,-26.9084544,4.3857431,12.9780515,-32.2055657,-33.7086648,9.8085704,-36.2800196,215.7518511,6.5786146,-9.4385829,-19.3233394,-40.4503978,17.1649982,-7.4230219,14.2536650,-23.5964573,-53.1391834,-52.8102415,22.0692834,-54.7447866,24.1215870,-44.8332688,-24.1541743,-42.6976421,26.9735686,-40.8266205,191.1413737,17.5429723,-70.7893718,-37.0364006,-39.3267756,-4.9042852,-0.9278777,93.5198138,-6.5786146,-24.7762801,-28.9850091,-39.3267756,22.0692834,-50.1053979,14.2536650,23.5964573,-20.9336177,-53.9338637,14.7128556,-39.8987428,4.3857431,-64.8902575,-59.5802966,-33.7086648,22.0692834,2.7836332,46.0503024,-35.3946859,-43.4775137,-53.9338637,30.2430921,-34.3314764,80.3942259,28.5073300,-87.3068919,-24.1541743,-62.9228410,13.0780939,-25.0526990,35.0859447,-24.7762801,-38.6466789,-58.4283523,31.0604729,0.0000000,24.4562563,1.0964358,-27.1359259,-75.6830794,-16.8543324,20.4345217,-11.1345329,74.1390629,18.2282447,-27.3044720,-45.2890768,-46.7707724,15.3258912,-27.9523169,-6.9763039,117.3099418,18.6394081,-21.2368115,-38.6466789,-34.8322870,22.0692834,-48.2496425,6.5786146,-64.8902575,-51.5289052,-80.9007955,23.7040451,-26.9084544,223.1349942,8.7714862,10.6184058,-127.2119846,-31.4614205,0.8173809,-16.7017993,9.8679219,-35.3946859,-54.7494617,-44.9448864,14.7128556,-18.5575548,97.5827836,-166.3550237,-95.0064189,-123.5984376,104.6247509,-121.5519839,33.9895089,-44.8332688,-40.2569571,-56.1811080,51.4949946,0.0000000,-16.9312544,95.9808615,6.5786146,-21.2368115,-9.6616697,-13.4834659,10.6259513,-25.9805767,116.4895926,-1.0964358,-16.5175201,-56.3597400,-44.9448864,13.8954747,-12.9902884,-5.6437515,71.3703842,25.2180227,-41.2938002,-53.1391834,-32.5850426,8.9911895,12.9902884,31.9812582,1.0964358,-70.7893718,-33.8158440,-38.2031534,-15.5302365,-25.0526990,153.4053085,36.1823804,-34.2148630,-41.8672354,-19.1015767,22.8866643,0.9278777,20.8322796,-29.4955716,-43.4775137,-69.6645739,33.5126155,-45.4660092,26.3144585,-33.0350402,24.1541743,-42.6976421,0.0000000,-28.7642099,38.3752520,-7.0789372,-22.5438960,-20.2251989,34.3299964,19.4854325,4.3857431,-61.3507889,-33.8158440,-64.0464631,39.2342816,-28.7642099,183.7582306,-4.3857431,-22.4166344,-28.9850091,-57.3047302,25.3388069,-26.9084544,35.0859447,7.0789372,-33.8158440,-43.8212642,-1.6347617,5.5672664,-35.0859447,-40.1139773,-14.4925046,-12.3598438,21.2519025,-14.8460438,119.7709896,30.7002016,-22.4166344,-46.6980703,-43.8212642,5.7216661,-10.2066551,203.4466124,116.2221917,-83.7674233,-109.4989234,-38.2031534,78.4685632,-56.6005421,21.9287154,-63.7104346,-56.3597400,-4.4944886,25.3388069,-73.3023414,29.6037658,-31.8552173,-46.6980703,-79.7771734,21.2519025,-18.5575548,16.4465366,-27.1359259,-43.4775137,-41.5740199,-11.4433321,-23.1969435,27.4108943,-84.9472461,-53.1391834,-40.4503978,22.8866643,16.7017993)

tl;dr我认为你的问题在于每个个体在每个时间点都有完全相同的回答值(分数)(即个体内部的完全同质性),因此随机效应项完全解释了数据;固定效果已经没有了。您确定不想使用
gene
作为响应变量吗??(经过一系列建模尝试后发现,通过绘制该死的数据,每个人都应该首先做的事情…)

不,那很好

让我们在lme4中试一试:

library(lme4)
m1 <- lmer(score ~ timepoint + gene + (1|sample), data=dd)
## Error in fn(x, ...) : Downdated VtV is not positive definite
lmer
可以工作——有点

m1sc <- lmer(score ~ timepoint + gene + (1|sample), data=ddsc)
## Warning message:
## In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
##   Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
在这一点上,我只能想到几个可能性:

  • 实验设计中有一些东西意味着随机效应在某种程度上与一个或两个固定效应完全混淆
  • 这些都是人工构造的模拟数据,完全平衡


啊哈

为了让R求解矩阵,它需要在计算上是可逆的。返回的错误告诉您,出于计算目的,您的矩阵是奇异的,这意味着它没有逆矩阵

由于这个错误更多地涉及统计理论方面,它可能更适合交叉验证。有关更多信息,请参阅


检查您的数据,确保您没有完全相关的自变量。

请参阅中的德克·埃德尔布埃特尔的答案。仅供参考,在发布问题之前用谷歌搜索R给你的错误信息是个好主意,因为通常情况下,你不是第一个遇到错误的人。@nrussell,这是真的,但这是一个不同的问题(我认为)@Ben Bolker你是对的,它们不是完全相同的问题+下面是一个非常彻底的答案。他们没有。但是他们的一个自变量(个体)和回答(分数)是完全相关的。这绝对是问题所在。我一定会非常彻底地更新你的答案。
library(lme4)
m1 <- lmer(score ~ timepoint + gene + (1|sample), data=dd)
## Error in fn(x, ...) : Downdated VtV is not positive definite
ddsc <- transform(dd,
     timepoint=scale(timepoint),
     gene=scale(gene))
m0sc <- lme(score ~ timepoint + gene, data=ddsc,
     random = ~1|sample)
m1sc <- lmer(score ~ timepoint + gene + (1|sample), data=ddsc)
## Warning message:
## In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
##   Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## m1sc
## Linear mixed model fit by REML ['lmerMod']
## Formula: score ~ timepoint + gene + (1 | sample)
##    Data: ddsc
## REML criterion at convergence: -9062.721
## Random effects:
##  Groups   Name        Std.Dev. 
##  sample   (Intercept) 7.838e-01
##  Residual             3.344e-07
## Number of obs: 348, groups:  sample, 8
## Fixed Effects:
## (Intercept)    timepoint         gene  
##   5.714e+00   -4.194e-16   -1.032e-14  
library(ggplot2); theme_set(theme_bw())
ggplot(dd,aes(timepoint,score,group=sample,colour=gene))+
      geom_point(size=4)+
      geom_line(colour="red",alpha=0.5)