找不到符号二进制搜索树java

找不到符号二进制搜索树java,java,binary-search-tree,Java,Binary Search Tree,当我试图打印出数据时,我得到了这样一个错误:找不到符号。 下面是我的方法 public int heightOfBinaryTree(Node node) { if (node == null) { return 0; } else { return 1 + Math.max(heightOfBinaryTree(node.left), heightOfBinary

当我试图打印出数据时,我得到了这样一个错误:找不到符号。 下面是我的方法

  public int heightOfBinaryTree(Node node) {
    if (node == null) {
        return 0;
    } else {
        return 1
                + Math.max(heightOfBinaryTree(node.left),
                        heightOfBinaryTree(node.right));
    }
}
这是我的主要印刷品

 System.out.println(Math.max(heightOfBinaryTree(node.left)));
完整代码

public class Binaireboom<Key extends Comparable<Key>, Value> {

private Node root;             // root of BST

private class Node {

    private Key key;           // sorted by key
    private Value val;         // associated data
    private Node left, right;  // left and right subtrees
    private int N;             // number of nodes in subtree
    private int aantal;
    int height;

    public Node(Key key, Value val, int N, int aantal) {
        this.key = key;
        this.val = val;
        this.N = N;
        this.aantal = aantal;
    }
}


/**
 * Initializes an empty symbol tables.
 */
public Binaireboom() {
}

/**
 * Returns true if this symbol tables is empty.
 *
 * @return <tt>true</tt> if this symbol tables is empty; <tt>false</tt>
 * otherwise
 */
public boolean isEmpty() {
    return size() == 0;
}

/**
 * Returns the number of key-value pairs in this symbol tables.
 *
 * @return the number of key-value pairs in this symbol tables.
 */
public int size() {
    return size(root);
}

// return number of key-value pairs in BST rooted at x
private int size(Node x) {
    if (x == null) {
        return 0;
    } else {
        return x.N;
    }
}

/**
 * Does this symbol tables contain the given key?
 *
 * @param key the key
 * @return <tt>true</tt> if this symbol tables contains <tt>key</tt> and
 * <tt>false</tt> otherwise
 * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
 */
public boolean contains(Key key) {
    if (key == null) {
        throw new NullPointerException("argument to contains() is null");
    }
    return get(key) != null;
}

/**
 * Returns the value associated with the given key.
 *
 * @param key the key
 * @return the value associated with the given key if the key is in the
 * symbol tables and <tt>null</tt> if the key is not in the symbol tables
 * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
 */
public Value get(Key key) {
    return get(root, key);
}

private Value get(Node x, Key key) {
    if (x == null) {
        return null;
    }
    int cmp = key.compareTo(x.key);
    if (cmp < 0) {
        return get(x.left, key);
    } else if (cmp > 0) {
        return get(x.right, key);
    } else {
        return x.val;
    }
}

public int getAantal(Key key) {
    return getAantal(root, key);
}

private int getAantal(Node x, Key key) {
    if (x == null) {
        return 0;
    }
    int cmp = key.compareTo(x.key);
    if (cmp < 0) {
        return getAantal(x.left, key);
    } else if (cmp > 0) {
        return getAantal(x.right, key);
    } else {
        return x.aantal;
    }
}

/**
 * Inserts the specified key-value pair into the symbol tables, overwriting
 * the old value with the new value if the symbol tables already contains
 * the specified key. Deletes the specified key (and its associated value)
 * from this symbol tables if the specified value is <tt>null</tt>.
 *
 * @param key the key
 * @param val the value
 * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
 */
public void put(Key key, Value val) {
    if (key == null) {
        throw new NullPointerException("first argument to put() is null");
    }
    if (val == null) {
        delete(key);
        return;
    }
    root = put(root, key, val);
    assert check();
}

private Node put(Node x, Key key, Value val) {
    if (x == null) {
        return new Node(key, val, 1, 1);
    }
    int cmp = key.compareTo(x.key);
    if (cmp < 0) {
        x.left = put(x.left, key, val);
    } else if (cmp > 0) {
        x.right = put(x.right, key, val);
    } else if (cmp == 0) {
        x.aantal++;
    } else {
        x.val = val;
    }
    x.N = 1 + size(x.left) + size(x.right);
    return x;
}

/**
 * Removes the smallest key and associated value from the symbol tables.
 *
 * @throws NoSuchElementException if the symbol tables is empty
 */
public void deleteMin() {
    if (isEmpty()) {
        throw new NoSuchElementException("Symbol tables underflow");
    }
    root = deleteMin(root);
    assert check();
}

private Node deleteMin(Node x) {
    if (x.left == null) {
        return x.right;
    }
    x.left = deleteMin(x.left);
    x.N = size(x.left) + size(x.right) + 1;
    return x;
}

/**
 * Removes the largest key and associated value from the symbol tables.
 *
 * @throws NoSuchElementException if the symbol tables is empty
 */
public void deleteMax() {
    if (isEmpty()) {
        throw new NoSuchElementException("Symbol tables underflow");
    }
    root = deleteMax(root);
    assert check();
}

private Node deleteMax(Node x) {
    if (x.right == null) {
        return x.left;
    }
    x.right = deleteMax(x.right);
    x.N = size(x.left) + size(x.right) + 1;
    return x;
}

/**
 * Removes the specified key and its associated value from this symbol
 * tables (if the key is in this symbol tables).
 *
 * @param key the key
 * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
 */
public void delete(Key key) {
    if (key == null) {
        throw new NullPointerException("argument to delete() is null");
    }
    root = delete(root, key);
    assert check();
}

private Node delete(Node x, Key key) {
    if (x == null) {
        return null;
    }

    int cmp = key.compareTo(x.key);
    if (cmp < 0) {
        x.left = delete(x.left, key);
    } else if (cmp > 0) {
        x.right = delete(x.right, key);
    } else {
        if (x.right == null) {
            return x.left;
        }
        if (x.left == null) {
            return x.right;
        }
        Node t = x;
        x = min(t.right);
        x.right = deleteMin(t.right);
        x.left = t.left;
    }
    x.N = size(x.left) + size(x.right) + 1;
    return x;
}

/**
 * Returns the smallest key in the symbol tables.
 *
 * @return the smallest key in the symbol tables
 * @throws NoSuchElementException if the symbol tables is empty
 */
public Key min() {
    if (isEmpty()) {
        throw new NoSuchElementException("called min() with empty symbol tables");
    }
    return min(root).key;
}

private Node min(Node x) {
    if (x.left == null) {
        return x;
    } else {
        return min(x.left);
    }
}

/**
 * Returns the largest key in the symbol tables.
 *
 * @return the largest key in the symbol tables
 * @throws NoSuchElementException if the symbol tables is empty
 */
public Key max() {
    if (isEmpty()) {
        throw new NoSuchElementException("called max() with empty symbol tables");
    }
    return max(root).key;
}

private Node max(Node x) {
    if (x.right == null) {
        return x;
    } else {
        return max(x.right);
    }
}

/**
 * Returns the largest key in the symbol tables less than or equal to
 * <tt>key</tt>.
 *
 * @param key the keys
 * @return the largest key in the symbol tables less than or equal to
 * <tt>key</tt>
 * @throws NoSuchElementException if there is no such key
 * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
 */
public Key floor(Key key) {
    if (key == null) {
        throw new NullPointerException("argument to floor() is null");
    }
    if (isEmpty()) {
        throw new NoSuchElementException("called floor() with empty symbol tables");
    }
    Node x = floor(root, key);
    if (x == null) {
        return null;
    } else {
        return x.key;
    }
}

private Node floor(Node x, Key key) {
    if (x == null) {
        return null;
    }
    int cmp = key.compareTo(x.key);
    if (cmp == 0) {
        return x;
    }
    if (cmp < 0) {
        return floor(x.left, key);
    }
    Node t = floor(x.right, key);
    if (t != null) {
        return t;
    } else {
        return x;
    }
}

/**
 * Returns the smallest key in the symbol tables greater than or equal to
 * <tt>key</tt>.
 *
 * @param key the keys
 * @return the smallest key in the symbol tables greater than or equal to
 * <tt>key</tt>
 * @throws NoSuchElementException if there is no such key
 * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
 */
public Key ceiling(Key key) {
    if (key == null) {
        throw new NullPointerException("argument to ceiling() is null");
    }
    if (isEmpty()) {
        throw new NoSuchElementException("called ceiling() with empty symbol tables");
    }
    Node x = ceiling(root, key);
    if (x == null) {
        return null;
    } else {
        return x.key;
    }
}

private Node ceiling(Node x, Key key) {
    if (x == null) {
        return null;
    }
    int cmp = key.compareTo(x.key);
    if (cmp == 0) {
        return x;
    }
    if (cmp < 0) {
        Node t = ceiling(x.left, key);
        if (t != null) {
            return t;
        } else {
            return x;
        }
    }
    return ceiling(x.right, key);
}

/**
 * Return the kth smallest key in the symbol tables.
 *
 * @param k the order statistic
 * @return the kth smallest key in the symbol tables
 * @throws IllegalArgumentException unless <tt>k</tt> is between 0 and
 * <em>N</em> &minus; 1
 */
public Key select(int k) {
    if (k < 0 || k >= size()) {
        throw new IllegalArgumentException();
    }
    Node x = select(root, k);
    return x.key;
}

// Return key of rank k. 
private Node select(Node x, int k) {
    if (x == null) {
        return null;
    }
    int t = size(x.left);
    if (t > k) {
        return select(x.left, k);
    } else if (t < k) {
        return select(x.right, k - t - 1);
    } else {
        return x;
    }
}

/**
 * Return the number of keys in the symbol tables strictly less than
 * <tt>key</tt>.
 *
 * @param key the key
 * @return the number of keys in the symbol tables strictly less than
 * <tt>key</tt>
 * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
 */
public int rank(Key key) {
    if (key == null) {
        throw new NullPointerException("argument to rank() is null");
    }
    return rank(key, root);
}

// Number of keys in the subtree less than key.
private int rank(Key key, Node x) {
    if (x == null) {
        return 0;
    }
    int cmp = key.compareTo(x.key);
    if (cmp < 0) {
        return rank(key, x.left);
    } else if (cmp > 0) {
        return 1 + size(x.left) + rank(key, x.right);
    } else {
        return size(x.left);
    }
}

/**
 * Returns all keys in the symbol tables as an <tt>Iterable</tt>. To iterate
 * over all of the keys in the symbol tables named <tt>st</tt>, use the
 * foreach notation: <tt>for (Key key : st.keys())</tt>.
 *
 * @return all keys in the symbol tables
 */
public Iterable<Key> keys() {
    return keys(min(), max());
}

/**
 * Returns all keys in the symbol tables in the given range, as an
 * <tt>Iterable</tt>.
 *
 * @return all keys in the sybol tables between <tt>lo</tt>
 * (inclusive) and <tt>hi</tt> (exclusive)
 * @throws NullPointerException if either <tt>lo</tt> or <tt>hi</tt>
 * is <tt>null</tt>
 */
public Iterable<Key> keys(Key lo, Key hi) {
    if (lo == null) {
        throw new NullPointerException("first argument to keys() is null");
    }
    if (hi == null) {
        throw new NullPointerException("second argument to keys() is null");
    }

    Queue<Key> queue = new Queue<Key>();
    keys(root, queue, lo, hi);
    return queue;
}

private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
    if (x == null) {
        return;
    }
    int cmplo = lo.compareTo(x.key);
    int cmphi = hi.compareTo(x.key);
    if (cmplo < 0) {
        keys(x.left, queue, lo, hi);
    }
    if (cmplo <= 0 && cmphi >= 0) {
        queue.enqueue(x.key);
    }
    if (cmphi > 0) {
        keys(x.right, queue, lo, hi);
    }
}

/**
 * Returns the number of keys in the symbol tables in the given range.
 *
 * @return the number of keys in the sybol tables between <tt>lo</tt>
 * (inclusive) and <tt>hi</tt> (exclusive)
 * @throws NullPointerException if either <tt>lo</tt> or <tt>hi</tt>
 * is <tt>null</tt>
 */
public int size(Key lo, Key hi) {
    if (lo == null) {
        throw new NullPointerException("first argument to size() is null");
    }
    if (hi == null) {
        throw new NullPointerException("second argument to size() is null");
    }

    if (lo.compareTo(hi) > 0) {
        return 0;
    }
    if (contains(hi)) {
        return rank(hi) - rank(lo) + 1;
    } else {
        return rank(hi) - rank(lo);
    }
}

/**
 * Returns the height of the BST (for debugging).
 *
 * @return the height of the BST (a 1-node tree has height 0)
 */
public int height() {
    return height(root);
}

private int height(Node x) {
    if (x == null) {
        return -1;
    }
    return 1 + Math.max(height(x.left), height(x.right));
}

/**
 * Returns the keys in the BST in level orders (for debugging).
 *
 * @return the keys in the BST in level orders traversal
 */
public Iterable<Key> levelOrder() {
    Queue<Key> keys = new Queue<Key>();
    Queue<Node> queue = new Queue<Node>();
    queue.enqueue(root);
    while (!queue.isEmpty()) {
        Node x = queue.dequeue();
        if (x == null) {
            continue;
        }
        keys.enqueue(x.key);
        queue.enqueue(x.left);
        queue.enqueue(x.right);
    }
    return keys;
}

/**
 * ***********************
 * Check integrity of BST data structures.
************************
 */
private boolean check() {
    if (!isBST()) {
        StdOut.println("Not in symmetric order");
    }
    if (!isSizeConsistent()) {
        StdOut.println("Subtree counts not consistent");
    }
    if (!isRankConsistent()) {
        StdOut.println("Ranks not consistent");
    }
    return isBST() && isSizeConsistent() && isRankConsistent();
}

// does this binary tree satisfy symmetric order?
// Note: this test also ensures that data structure is a binary tree since order is strict
private boolean isBST() {
    return isBST(root, null, null);
}

// is the trees rooted at x a BST with all keys strictly between min and max
// (if min or max is null, treat as empty constraint)
// Credit: Bob Dondero's elegant solution
private boolean isBST(Node x, Key min, Key max) {
    if (x == null) {
        return true;
    }
    if (min != null && x.key.compareTo(min) <= 0) {
        return false;
    }
    if (max != null && x.key.compareTo(max) >= 0) {
        return false;
    }
    return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}

// are the size fields correct?
private boolean isSizeConsistent() {
    return isSizeConsistent(root);
}

private boolean isSizeConsistent(Node x) {
    if (x == null) {
        return true;
    }
    if (x.N != size(x.left) + size(x.right) + 1) {
        return false;
    }
    return isSizeConsistent(x.left) && isSizeConsistent(x.right);
}

// check that ranks are consistent
private boolean isRankConsistent() {
    for (int i = 0; i < size(); i++) {
        if (i != rank(select(i))) {
            return false;
        }
    }
    for (Key key : keys()) {
        if (key.compareTo(select(rank(key))) != 0) {
            return false;
        }
    }
    return true;
}

public int heightOfBinaryTree(Node node) {
    if (node == null) {
        return 0;
    } else {
        return 1
                + Math.max(heightOfBinaryTree(node.left),
                        heightOfBinaryTree(node.right));
    }
}

/**
 * Unit tests the <tt>BST</tt> data type.
 */
public static void main(String[] args) throws FileNotFoundException, IOException {
    long startTime = System.currentTimeMillis();

    //heightOfBinaryTree hbt = new heightOfBinaryTree();
    Binaireboom<String, Integer> st = new Binaireboom<String, Integer>();
    BufferedReader file = null;
    int i = 0;

    file = new BufferedReader(new FileReader(new File("")));
    String TemporaryVar;
    while ((TemporaryVar = file.readLine()) != null) {
        TemporaryVar = TemporaryVar.replaceAll("[`~!@#$%^&*()_|+\\-=?;:'\",.<>\\{\\}\\[\\]\\\\\\/]", "");
        String[] words = TemporaryVar.split(" ");
        for (String word : words) {
            if (word == null) {
                continue;
            }
            st.put(word, 1);
            i++;
        }
    }

    StdOut.println();

    for (String s : st.keys()) {
        StdOut.println(s + " " + st.getAantal(s));
    }
    System.out.println(i);

    System.out.println();
    System.out.println("elapsed: " + (System.currentTimeMillis() - startTime));
    System.out.println(Math.max(heightOfBinaryTree(node.left)));
}
}
public类二进制文件{
私有节点根;//BST的根
私有类节点{
私钥;//按密钥排序
私有值val;//关联的数据
私有节点左、右;//左、右子树
private int N;//子树中的节点数
私人国际机场;
内部高度;
公共节点(键、值val、int N、int aantal){
this.key=key;
this.val=val;
这个,N=N;
this.aantal=aantal;
}
}
/**
*初始化空符号表。
*/
公共二进制文件(){
}
/**
*如果此符号表为空,则返回true。
*
*@如果此符号表为空,则返回true;false
*否则
*/
公共布尔值为空(){
返回大小()==0;
}
/**
*返回此符号表中的键值对数。
*
*@返回此符号表中的键值对数。
*/
公共整数大小(){
返回大小(根);
}
//返回以x为根的BST中的键值对数
专用整数大小(节点x){
如果(x==null){
返回0;
}否则{
返回x.N;
}
}
/**
*此符号表是否包含给定的键?
*
*@param key这个键
*@如果此符号表包含键和
*否则就错了
*@在键为null时抛出NullPointerException
*/
公共布尔包含(键){
if(key==null){
抛出新的NullPointerException(“contains()的参数为null”);
}
return get(key)!=null;
}
/**
*返回与给定键关联的值。
*
*@param key这个键
*@返回与给定键关联的值(如果该键位于
*符号表,如果键不在符号表中,则为null
*@在键为null时抛出NullPointerException
*/
公共值获取(密钥){
返回get(root,key);
}
私有值获取(节点x,密钥){
如果(x==null){
返回null;
}
int cmp=键。比较(x.key);
if(cmp<0){
返回get(x.左,键);
}否则如果(cmp>0){
返回get(x.right,key);
}否则{
返回x.val;
}
}
公共int getAantal(键){
返回getAantal(根,键);
}
private int getAantal(节点x,密钥){
如果(x==null){
返回0;
}
int cmp=键。比较(x.key);
if(cmp<0){
返回getAantal(左x键);
}否则如果(cmp>0){
返回getAantal(x.右,键);
}否则{
返回x.aantal;
}
}
/**
*将指定的键值对插入符号表,覆盖
*如果符号表已包含,则使用新值替换旧值
*指定的键。删除指定的键(及其关联值)
*如果指定的值为空,则从该符号表中删除。
*
*@param key这个键
*@param val值
*@在键为null时抛出NullPointerException
*/
公共作废put(键、值val){
if(key==null){
抛出新的NullPointerException(“put()的第一个参数为null”);
}
if(val==null){
删除(键);
返回;
}
root=put(root,key,val);
断言检查();
}
专用节点put(节点x、密钥、值val){
如果(x==null){
返回新节点(key,val,1,1);
}
int cmp=键。比较(x.key);
if(cmp<0){
x、 左=放置(x.左,键,val);
}否则如果(cmp>0){
x、 右=放置(x.右,键,值);
}否则如果(cmp==0){
x、 aantal++;
}否则{
x、 val=val;
}
x、 N=1+尺寸(x.左)+尺寸(x.右);
返回x;
}
/**
*从符号表中删除最小键和关联值。
*
*如果符号表为空,@将抛出NoSuchElementException
*/
公共void deleteMin(){
if(isEmpty()){
抛出新的NoTouchElementException(“符号表下溢”);
}
根=删除最小值(根);
断言检查();
}
专用节点deleteMin(节点x){
如果(x.left==null){
返回x.right;
}
x、 左=删除最小值(x.左);
x、 N=尺寸(x.左)+尺寸(x.右)+1;
返回x;
}
/**
*从符号表中删除最大键和关联值。
*
*如果符号表为空,@将抛出NoSuchElementException
*/
公共void deleteMax(){
if(isEmpty()){
抛出新的NoTouchElementException(“符号表下溢”);
}
根=删除最大值(根);
断言检查();
}
专用节点deleteMax(节点x){
如果(x.right==null){
返回x.left;
}
x、 右=删除最大值(x.右);
x、 N=尺寸(x.左)+尺寸(x.右)+1;
返回x;
}
/**
*从此符号中删除指定键及其关联值
*表(如果键在此符号表中)。
*
*@param key这个键
*@在键为null时抛出NullPointerException
*/
公共无效删除(密钥){
if(key==null){
抛出新的NullPointerException(“delete()的参数为null”);
}
根=删除(根,键);
断言检查();
}
专用节点删除(节点x,密钥){
如果(x==null){
返回null;
}
int cmp=键。比较(x.key);
if(cmp<0){
x、 左=删除(x.左,键);
}否则如果(cmp>0){
x、 右=删除(x.右,键);
}否则{
如果(x.right==null){
返回x.left;
}
如果(x.left==null){
返回x.right;
}
节点t=x;
x=最小值(t.右侧);
x、 右=删除最小值(t.右);
x、 左=t.左;
}
x、 N=尺寸(x.左)+尺寸(x.右)+1;
返回x;
}
/**
*返回符号表中的最小键。
*
*@返回符号表中的最小键
*如果符号表为空,@将抛出NoSuchElementException
*/
公钥min(){
if(isEmpty()){
抛出新的NoSuchElementException(“使用空符号表调用min());
}
Node node = new Node(args....)
Node node = someobject.getNode(arg..);