如何在Java中实现LRU缓存?

如何在Java中实现LRU缓存?,java,caching,data-structures,lru,Java,Caching,Data Structures,Lru,请不要说EHCache或OSCache等。为了解决这个问题,假设我只想使用SDK实现我自己的(边做边学)。假设缓存将在多线程环境中使用,您将使用哪些数据结构?我已经用and实现了一个,但我很好奇是否有新的并发集合是更好的候选者 更新:当我发现这个金块时,我正在通读: 如果您需要固定的时间访问并希望保持插入顺序,那么最好的方法莫过于LinkedHashMap,这是一种真正出色的数据结构。如果有一个并发版本的话,它可能会更奇妙。但是,唉 在使用上面提到的LinkedHashMap+集合#synchr

请不要说EHCache或OSCache等。为了解决这个问题,假设我只想使用SDK实现我自己的(边做边学)。假设缓存将在多线程环境中使用,您将使用哪些数据结构?我已经用and实现了一个,但我很好奇是否有新的并发集合是更好的候选者

更新:当我发现这个金块时,我正在通读:

如果您需要固定的时间访问并希望保持插入顺序,那么最好的方法莫过于LinkedHashMap,这是一种真正出色的数据结构。如果有一个并发版本的话,它可能会更奇妙。但是,唉

在使用上面提到的
LinkedHashMap
+
集合#synchronizedMap
实现之前,我的想法几乎完全相同。很高兴知道我没有忽略什么

根据目前的答案,我认为对于一个高度并行的LRU来说,我最好的选择是使用一些与LinkedHashMap > <代码>使用的逻辑相同的逻辑。

< P>我会考虑使用,优先级由每个元素中的“数词”计数器决定。我会非常非常小心地使我的同步正确,因为“numberOfUses”计数器暗示元素不可能是不变的

元素对象将是缓存中对象的包装器:

class CacheElement {
    private final Object obj;
    private int numberOfUsers = 0;

    CacheElement(Object obj) {
        this.obj = obj;
    }

    ... etc.
}
看一看。如果某个元素已经包含在缓存中,它应该为您提供测试和删除该元素的log(n)时间,以及重新添加该元素的恒定时间


您只需要一些计数器etc和包装器元素来强制对LRU顺序进行排序,并确保在缓存已满时丢弃最近的内容。

对于缓存,您通常会通过代理对象(URL、字符串……)查找某些数据,因此在接口方面您需要一个映射。但要想把事情解决掉,你需要一个类似队列的结构。在内部,我将维护两个数据结构,一个优先级队列和一个HashMap。这是一个应该能够在O(1)时间内完成所有事情的实现

我很快就上了一堂课:

import java.util.HashMap;
import java.util.Map;
public class LRUCache<K, V>
{
    int maxSize;
    int currentSize = 0;

    Map<K, ValueHolder<K, V>> map;
    LinkedList<K> queue;

    public LRUCache(int maxSize)
    {
        this.maxSize = maxSize;
        map = new HashMap<K, ValueHolder<K, V>>();
        queue = new LinkedList<K>();
    }

    private void freeSpace()
    {
        K k = queue.remove();
        map.remove(k);
        currentSize--;
    }

    public void put(K key, V val)
    {
        while(currentSize >= maxSize)
        {
            freeSpace();
        }
        if(map.containsKey(key))
        {//just heat up that item
            get(key);
            return;
        }
        ListNode<K> ln = queue.add(key);
        ValueHolder<K, V> rv = new ValueHolder<K, V>(val, ln);
        map.put(key, rv);       
        currentSize++;
    }

    public V get(K key)
    {
        ValueHolder<K, V> rv = map.get(key);
        if(rv == null) return null;
        queue.remove(rv.queueLocation);
        rv.queueLocation = queue.add(key);//this ensures that each item has only one copy of the key in the queue
        return rv.value;
    }
}

class ListNode<K>
{
    ListNode<K> prev;
    ListNode<K> next;
    K value;
    public ListNode(K v)
    {
        value = v;
        prev = null;
        next = null;
    }
}

class ValueHolder<K,V>
{
    V value;
    ListNode<K> queueLocation;
    public ValueHolder(V value, ListNode<K> ql)
    {
        this.value = value;
        this.queueLocation = ql;
    }
}

class LinkedList<K>
{
    ListNode<K> head = null;
    ListNode<K> tail = null;

    public ListNode<K> add(K v)
    {
        if(head == null)
        {
            assert(tail == null);
            head = tail = new ListNode<K>(v);
        }
        else
        {
            tail.next = new ListNode<K>(v);
            tail.next.prev = tail;
            tail = tail.next;
            if(tail.prev == null)
            {
                tail.prev = head;
                head.next = tail;
            }
        }
        return tail;
    }

    public K remove()
    {
        if(head == null)
            return null;
        K val = head.value;
        if(head.next == null)
        {
            head = null;
            tail = null;
        }
        else
        {
            head = head.next;
            head.prev = null;
        }
        return val;
    }

    public void remove(ListNode<K> ln)
    {
        ListNode<K> prev = ln.prev;
        ListNode<K> next = ln.next;
        if(prev == null)
        {
            head = next;
        }
        else
        {
            prev.next = next;
        }
        if(next == null)
        {
            tail = prev;
        }
        else
        {
            next.prev = prev;
        }       
    }
}
import java.util.HashMap;
导入java.util.Map;
公共类LRUCache
{
int-maxSize;
int currentSize=0;
地图;
链接列表队列;
公共LRUCache(int maxSize)
{
this.maxSize=maxSize;
map=新的HashMap();
队列=新的LinkedList();
}
私有void freeSpace()
{
K=queue.remove();
地图。删除(k);
当前大小--;
}
公开作废认沽权(K键,V值)
{
而(currentSize>=maxSize)
{
自由空间();
}
if(地图容器(图例))
{//把那个东西加热就行了
获取(密钥);
返回;
}
ListNode ln=queue.add(键);
估价师rv=新估价师(val,ln);
地图放置(钥匙,rv);
currentSize++;
}
公共V get(K键)
{
ValueHolder rv=映射获取(键);
如果(rv==null)返回null;
队列移除(rv.queueLocation);
rv.queueLocation=queue.add(key);//这确保每个项目在队列中只有一个密钥副本
返回rv.value;
}
}
类ListNode
{
listnodeprev;
listnodenext;
K值;
公共列表节点(K v)
{
值=v;
prev=null;
next=null;
}
}
类别价值持有人
{
V值;
列表节点队列位置;
公共价值持有人(V值,ListNode ql)
{
这个值=值;
this.queueLocation=ql;
}
}
类链接列表
{
listnodehead=null;
listnodetail=null;
公共列表节点添加(K v)
{
if(head==null)
{
断言(tail==null);
头=尾=新列表节点(v);
}
其他的
{
tail.next=新的ListNode(v);
tail.next.prev=tail;
tail=tail.next;
if(tail.prev==null)
{
tail.prev=头部;
head.next=tail;
}
}
返回尾;
}
公共K删除()
{
if(head==null)
返回null;
K val=水头值;
if(head.next==null)
{
head=null;
tail=null;
}
其他的
{
head=head.next;
head.prev=null;
}
返回val;
}
公共无效删除(列表节点项次)
{
ListNode prev=ln.prev;
listnodenext=ln.next;
if(prev==null)
{
头=下一个;
}
其他的
{
上一个=下一个;
}
if(next==null)
{
尾部=上一个;
}
其他的
{
next.prev=prev;
}       
}
}
下面是它的工作原理。键存储在链接列表中,最旧的键位于列表的前面(新键位于后面),因此当您需要“弹出”某个对象时,只需将其从队列的前面弹出,然后使用该键从映射中删除该值。当项目被引用时,您从映射中获取ValueHolder,然后使用queuelocation变量从其在队列中的当前位置移除密钥,然后将其放在队列的后面(它现在是最近使用的)。添加东西几乎是一样的

我确信这里有很多错误,而且我还没有实现任何同步。但是这个类将提供O(1)添加到缓存,O(1)删除旧项,以及O(1)检索缓存项。由于运行时的原因,即使是一个简单的同步(只是同步每个公共方法)也不会有锁争用。如果有人有任何聪明的同步技巧,我会非常感兴趣。另外,我确信您可以使用max实现一些额外的优化
private class LruCache<A, B> extends LinkedHashMap<A, B> {
    private final int maxEntries;

    public LruCache(final int maxEntries) {
        super(maxEntries + 1, 1.0f, true);
        this.maxEntries = maxEntries;
    }

    /**
     * Returns <tt>true</tt> if this <code>LruCache</code> has more entries than the maximum specified when it was
     * created.
     *
     * <p>
     * This method <em>does not</em> modify the underlying <code>Map</code>; it relies on the implementation of
     * <code>LinkedHashMap</code> to do that, but that behavior is documented in the JavaDoc for
     * <code>LinkedHashMap</code>.
     * </p>
     *
     * @param eldest
     *            the <code>Entry</code> in question; this implementation doesn't care what it is, since the
     *            implementation is only dependent on the size of the cache
     * @return <tt>true</tt> if the oldest
     * @see java.util.LinkedHashMap#removeEldestEntry(Map.Entry)
     */
    @Override
    protected boolean removeEldestEntry(final Map.Entry<A, B> eldest) {
        return super.size() > maxEntries;
    }
}

Map<String, String> example = Collections.synchronizedMap(new LruCache<String, String>(CACHE_SIZE));
private void moveToFront(int index) {
        if (listHead != index) {
            int thisNext = nextElement[index];
            int thisPrev = prevElement[index];
            nextElement[thisPrev] = thisNext;
            if (thisNext >= 0) {
                prevElement[thisNext] = thisPrev;
            } else {
                listTail = thisPrev;
            }
            //old listHead and new listHead say new is 1 and old was 0 then prev[1]= 1 is the head now so no previ so -1
            // prev[0 old head] = new head right ; next[new head] = old head
            prevElement[index] = -1;
            nextElement[index] = listHead;
            prevElement[listHead] = index;
            listHead = index;
        }
    }
package util.collection;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;

/**
 * Limited size concurrent cache map implementation.<br/>
 * LRU: Least Recently Used.<br/>
 * If you add a new key-value pair to this cache after the maximum size has been exceeded,
 * the oldest key-value pair will be removed before adding.
 */

public class ConcurrentLRUCache<Key, Value> {

private final int maxSize;
private int currentSize = 0;

private ConcurrentHashMap<Key, Value> map;
private ConcurrentLinkedQueue<Key> queue;

public ConcurrentLRUCache(final int maxSize) {
    this.maxSize = maxSize;
    map = new ConcurrentHashMap<Key, Value>(maxSize);
    queue = new ConcurrentLinkedQueue<Key>();
}

private synchronized void freeSpace() {
    Key key = queue.poll();
    if (null != key) {
        map.remove(key);
        currentSize = map.size();
    }
}

public void put(Key key, Value val) {
    if (map.containsKey(key)) {// just heat up that item
        put(key, val);
        return;
    }
    while (currentSize >= maxSize) {
        freeSpace();
    }
    synchronized(this) {
        queue.add(key);
        map.put(key, val);
        currentSize++;
    }
}

public Value get(Key key) {
    return map.get(key);
}
}
public class ConcurrentLRUCache<Key, Value> {

private final int maxSize;

private ConcurrentHashMap<Key, Value> map;
private ConcurrentLinkedQueue<Key> queue;

public ConcurrentLRUCache(final int maxSize) {
    this.maxSize = maxSize;
    map = new ConcurrentHashMap<Key, Value>(maxSize);
    queue = new ConcurrentLinkedQueue<Key>();
}

/**
 * @param key - may not be null!
 * @param value - may not be null!
 */
public void put(final Key key, final Value value) {
    if (map.containsKey(key)) {
        queue.remove(key); // remove the key from the FIFO queue
    }

    while (queue.size() >= maxSize) {
        Key oldestKey = queue.poll();
        if (null != oldestKey) {
            map.remove(oldestKey);
        }
    }
    queue.add(key);
    map.put(key, value);
}

/**
 * @param key - may not be null!
 * @return the value associated to the given key or null
 */
public Value get(final Key key) {
    return map.get(key);
}
    /**
     * This method is invoked by the superclass whenever the value
     * of a pre-existing entry is read by Map.get or modified by Map.set.
     * If the enclosing Map is access-ordered, it moves the entry
     * to the end of the list; otherwise, it does nothing.
     */
    void recordAccess(HashMap<K,V> m) {
        LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
        if (lm.accessOrder) {
            lm.modCount++;
            remove();
            addBefore(lm.header);
        }
    }
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;


public class MaxIdleLRUCache<KK, VV> {

    final static private int IDEAL_MAX_CACHE_ENTRIES = 128;

    public interface DeadElementCallback<KK, VV> {
        public void notify(KK key, VV element);
    }

    private Object lock = new Object();
    private long minAge;
    private HashMap<KK, Item<VV>> cache;


    public MaxIdleLRUCache(long minAgeMilliseconds) {
        this(minAgeMilliseconds, IDEAL_MAX_CACHE_ENTRIES);
    }

    public MaxIdleLRUCache(long minAgeMilliseconds, int idealMaxCacheEntries) {
        this(minAgeMilliseconds, idealMaxCacheEntries, null);
    }

    public MaxIdleLRUCache(long minAgeMilliseconds, int idealMaxCacheEntries, final DeadElementCallback<KK, VV> callback) {
        this.minAge = minAgeMilliseconds;
        this.cache = new LinkedHashMap<KK, Item<VV>>(IDEAL_MAX_CACHE_ENTRIES + 1, .75F, true) {
            private static final long serialVersionUID = 1L;

            // This method is called just after a new entry has been added
            public boolean removeEldestEntry(Map.Entry<KK, Item<VV>> eldest) {
                // let's see if the oldest entry is old enough to be deleted. We don't actually care about the cache size.
                long age = System.currentTimeMillis() - eldest.getValue().birth;
                if (age > MaxIdleLRUCache.this.minAge) {
                    if ( callback != null ) {
                        callback.notify(eldest.getKey(), eldest.getValue().payload);
                    }
                    return true; // remove it
                }
                return false; // don't remove this element
            }
        };

    }

    public void put(KK key, VV value) {
        synchronized ( lock ) {
//          System.out.println("put->"+key+","+value);
            cache.put(key, new Item<VV>(value));
        }
    }

    public VV get(KK key) {
        synchronized ( lock ) {
//          System.out.println("get->"+key);
            Item<VV> item = getItem(key);
            return item == null ? null : item.payload;
        }
    }

    public VV remove(String key) {
        synchronized ( lock ) {
//          System.out.println("remove->"+key);
            Item<VV> item =  cache.remove(key);
            if ( item != null ) {
                return item.payload;
            } else {
                return null;
            }
        }
    }

    public int size() {
        synchronized ( lock ) {
            return cache.size();
        }
    }

    private Item<VV> getItem(KK key) {
        Item<VV> item = cache.get(key);
        if (item == null) {
            return null;
        }
        item.touch(); // idle the item to reset the timeout threshold
        return item;
    }

    private static class Item<T> {
        long birth;
        T payload;

        Item(T payload) {
            this.birth = System.currentTimeMillis();
            this.payload = payload;
        }

        public void touch() {
            this.birth = System.currentTimeMillis();
        }
    }

}
import java.util.Comparator;
import java.util.Iterator;
import java.util.PriorityQueue;


public class LRUForCache {
    private PriorityQueue<LRUPage> priorityQueue = new PriorityQueue<LRUPage>(3, new LRUPageComparator());
    public static void main(String[] args) throws InterruptedException {

        System.out.println(" Pages for consideration : 2, 1, 0, 2, 8, 2, 4");
        System.out.println("----------------------------------------------\n");

        LRUForCache cache = new LRUForCache();
        cache.addPageToQueue(new LRUPage("2"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("1"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("0"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("2"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("8"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("2"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("4"));
        Thread.sleep(100);

        System.out.println("\nLRUCache Pages");
        System.out.println("-------------");
        cache.displayPriorityQueue();
    }


    public synchronized void  addPageToQueue(LRUPage page){
        boolean pageExists = false;
        if(priorityQueue.size() == 3){
            Iterator<LRUPage> iterator = priorityQueue.iterator();

            while(iterator.hasNext()){
                LRUPage next = iterator.next();
                if(next.getPageName().equals(page.getPageName())){
                    /* wanted to just change the time, so that no need to poll and add again.
                       but elements ordering does not happen, it happens only at the time of adding
                       to the queue

                       In case somebody finds it, plz let me know.
                     */
                    //next.setPageCreationTime(page.getPageCreationTime()); 

                    priorityQueue.remove(next);
                    System.out.println("Page: " + page.getPageName() + " already exisit in cache. Last accessed time updated");
                    pageExists = true;
                    break;
                }
            }
            if(!pageExists){
                // enable it for printing the queue elemnts
                //System.out.println(priorityQueue);
                LRUPage poll = priorityQueue.poll();
                System.out.println("Page Fault, PAGE: " + poll.getPageName()+", Replaced with PAGE: "+page.getPageName());

            }
        }
        if(!pageExists){
            System.out.println("Page added into cache is : " + page.getPageName());
        }
        priorityQueue.add(page);

    }

    public void displayPriorityQueue(){
        Iterator<LRUPage> iterator = priorityQueue.iterator();
        while(iterator.hasNext()){
            LRUPage next = iterator.next();
            System.out.println(next);
        }
    }
}

class LRUPage{
    private String pageName;
    private long pageCreationTime;
    public LRUPage(String pagename){
        this.pageName = pagename;
        this.pageCreationTime = System.currentTimeMillis();
    }

    public String getPageName() {
        return pageName;
    }

    public long getPageCreationTime() {
        return pageCreationTime;
    }

    public void setPageCreationTime(long pageCreationTime) {
        this.pageCreationTime = pageCreationTime;
    }

    @Override
    public boolean equals(Object obj) {
        LRUPage page = (LRUPage)obj; 
        if(pageCreationTime == page.pageCreationTime){
            return true;
        }
        return false;
    }

    @Override
    public int hashCode() {
        return (int) (31 * pageCreationTime);
    }

    @Override
    public String toString() {
        return "PageName: " + pageName +", PageCreationTime: "+pageCreationTime;
    }
}


class LRUPageComparator implements Comparator<LRUPage>{

    @Override
    public int compare(LRUPage o1, LRUPage o2) {
        if(o1.getPageCreationTime() > o2.getPageCreationTime()){
            return 1;
        }
        if(o1.getPageCreationTime() < o2.getPageCreationTime()){
            return -1;
        }
        return 0;
    }
}
import java.util.LinkedHashMap;
import java.util.Map;

/**
 * @author Deepak Singhvi
 *
 */
public class LRUCacheUsingLinkedHashMap {


     private static int CACHE_SIZE = 3;
     public static void main(String[] args) {
        System.out.println(" Pages for consideration : 2, 1, 0, 2, 8, 2, 4,99");
        System.out.println("----------------------------------------------\n");


// accessOrder is true, so whenever any page gets changed or accessed,    // its order will change in the map, 
              LinkedHashMap<Integer,String> lruCache = new              
                 LinkedHashMap<Integer,String>(CACHE_SIZE, .75F, true) {

           private static final long serialVersionUID = 1L;

           protected boolean removeEldestEntry(Map.Entry<Integer,String>                           

                     eldest) {
                          return size() > CACHE_SIZE;
                     }

                };

  lruCache.put(2, "2");
  lruCache.put(1, "1");
  lruCache.put(0, "0");
  System.out.println(lruCache + "  , After first 3 pages in cache");
  lruCache.put(2, "2");
  System.out.println(lruCache + "  , Page 2 became the latest page in the cache");
  lruCache.put(8, "8");
  System.out.println(lruCache + "  , Adding page 8, which removes eldest element 2 ");
  lruCache.put(2, "2");
  System.out.println(lruCache+ "  , Page 2 became the latest page in the cache");
  lruCache.put(4, "4");
  System.out.println(lruCache+ "  , Adding page 4, which removes eldest element 1 ");
  lruCache.put(99, "99");
  System.out.println(lruCache + " , Adding page 99, which removes eldest element 8 ");

     }

}
 Pages for consideration : 2, 1, 0, 2, 8, 2, 4,99
--------------------------------------------------
    {2=2, 1=1, 0=0}  , After first 3 pages in cache
    {2=2, 1=1, 0=0}  , Page 2 became the latest page in the cache
    {1=1, 0=0, 8=8}  , Adding page 8, which removes eldest element 2 
    {0=0, 8=8, 2=2}  , Page 2 became the latest page in the cache
    {8=8, 2=2, 4=4}  , Adding page 4, which removes eldest element 1 
    {2=2, 4=4, 99=99} , Adding page 99, which removes eldest element 8 
import java.util.LinkedHashMap;
import java.util.Map;

public class LruSimpleCache<K, V> implements LruCache <K, V>{

    Map<K, V> map = new LinkedHashMap (  );


    public LruSimpleCache (final int limit) {
           map = new LinkedHashMap <K, V> (16, 0.75f, true) {
               @Override
               protected boolean removeEldestEntry(final Map.Entry<K, V> eldest) {
                   return super.size() > limit;
               }
           };
    }
    @Override
    public void put ( K key, V value ) {
        map.put ( key, value );
    }

    @Override
    public V get ( K key ) {
        return map.get(key);
    }

    //For testing only
    @Override
    public V getSilent ( K key ) {
        V value =  map.get ( key );
        if (value!=null) {
            map.remove ( key );
            map.put(key, value);
        }
        return value;
    }

    @Override
    public void remove ( K key ) {
        map.remove ( key );
    }

    @Override
    public int size () {
        return map.size ();
    }

    public String toString() {
        return map.toString ();
    }


}
public class LruSimpleTest {

    @Test
    public void test () {
        LruCache <Integer, Integer> cache = new LruSimpleCache<> ( 4 );


        cache.put ( 0, 0 );
        cache.put ( 1, 1 );

        cache.put ( 2, 2 );
        cache.put ( 3, 3 );


        boolean ok = cache.size () == 4 || die ( "size" + cache.size () );


        cache.put ( 4, 4 );
        cache.put ( 5, 5 );
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();
        ok |= cache.getSilent ( 4 ) == 4 || die ();
        ok |= cache.getSilent ( 5 ) == 5 || die ();


        cache.get ( 2 );
        cache.get ( 3 );
        cache.put ( 6, 6 );
        cache.put ( 7, 7 );
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();
        ok |= cache.getSilent ( 4 ) == null || die ();
        ok |= cache.getSilent ( 5 ) == null || die ();


        if ( !ok ) die ();

    }
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class LruSimpleConcurrentCache<K, V> implements LruCache<K, V> {

    final CacheMap<K, V>[] cacheRegions;


    private static class CacheMap<K, V> extends LinkedHashMap<K, V> {
        private final ReadWriteLock readWriteLock;
        private final int limit;

        CacheMap ( final int limit, boolean fair ) {
            super ( 16, 0.75f, true );
            this.limit = limit;
            readWriteLock = new ReentrantReadWriteLock ( fair );

        }

        protected boolean removeEldestEntry ( final Map.Entry<K, V> eldest ) {
            return super.size () > limit;
        }


        @Override
        public V put ( K key, V value ) {
            readWriteLock.writeLock ().lock ();

            V old;
            try {

                old = super.put ( key, value );
            } finally {
                readWriteLock.writeLock ().unlock ();
            }
            return old;

        }


        @Override
        public V get ( Object key ) {
            readWriteLock.writeLock ().lock ();
            V value;

            try {

                value = super.get ( key );
            } finally {
                readWriteLock.writeLock ().unlock ();
            }
            return value;
        }

        @Override
        public V remove ( Object key ) {

            readWriteLock.writeLock ().lock ();
            V value;

            try {

                value = super.remove ( key );
            } finally {
                readWriteLock.writeLock ().unlock ();
            }
            return value;

        }

        public V getSilent ( K key ) {
            readWriteLock.writeLock ().lock ();

            V value;

            try {

                value = this.get ( key );
                if ( value != null ) {
                    this.remove ( key );
                    this.put ( key, value );
                }
            } finally {
                readWriteLock.writeLock ().unlock ();
            }
            return value;

        }

        public int size () {
            readWriteLock.readLock ().lock ();
            int size = -1;
            try {
                size = super.size ();
            } finally {
                readWriteLock.readLock ().unlock ();
            }
            return size;
        }

        public String toString () {
            readWriteLock.readLock ().lock ();
            String str;
            try {
                str = super.toString ();
            } finally {
                readWriteLock.readLock ().unlock ();
            }
            return str;
        }


    }

    public LruSimpleConcurrentCache ( final int limit, boolean fair ) {
        int cores = Runtime.getRuntime ().availableProcessors ();
        int stripeSize = cores < 2 ? 4 : cores * 2;
        cacheRegions = new CacheMap[ stripeSize ];
        for ( int index = 0; index < cacheRegions.length; index++ ) {
            cacheRegions[ index ] = new CacheMap<> ( limit / cacheRegions.length, fair );
        }
    }

    public LruSimpleConcurrentCache ( final int concurrency, final int limit, boolean fair ) {

        cacheRegions = new CacheMap[ concurrency ];
        for ( int index = 0; index < cacheRegions.length; index++ ) {
            cacheRegions[ index ] = new CacheMap<> ( limit / cacheRegions.length, fair );
        }
    }

    private int stripeIndex ( K key ) {
        int hashCode = key.hashCode () * 31;
        return hashCode % ( cacheRegions.length );
    }

    private CacheMap<K, V> map ( K key ) {
        return cacheRegions[ stripeIndex ( key ) ];
    }

    @Override
    public void put ( K key, V value ) {

        map ( key ).put ( key, value );
    }

    @Override
    public V get ( K key ) {
        return map ( key ).get ( key );
    }

    //For testing only
    @Override
    public V getSilent ( K key ) {
        return map ( key ).getSilent ( key );

    }

    @Override
    public void remove ( K key ) {
        map ( key ).remove ( key );
    }

    @Override
    public int size () {
        int size = 0;
        for ( CacheMap<K, V> cache : cacheRegions ) {
            size += cache.size ();
        }
        return size;
    }

    public String toString () {

        StringBuilder builder = new StringBuilder ();
        for ( CacheMap<K, V> cache : cacheRegions ) {
            builder.append ( cache.toString () ).append ( '\n' );
        }

        return builder.toString ();
    }


}
public class SimpleConcurrentLRUCache {


    @Test
    public void test () {
        LruCache <Integer, Integer> cache = new LruSimpleConcurrentCache<> ( 1, 4, false );


        cache.put ( 0, 0 );
        cache.put ( 1, 1 );

        cache.put ( 2, 2 );
        cache.put ( 3, 3 );


        boolean ok = cache.size () == 4 || die ( "size" + cache.size () );


        cache.put ( 4, 4 );
        cache.put ( 5, 5 );

        puts (cache);
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();
        ok |= cache.getSilent ( 4 ) == 4 || die ();
        ok |= cache.getSilent ( 5 ) == 5 || die ();


        cache.get ( 2 );
        cache.get ( 3 );
        cache.put ( 6, 6 );
        cache.put ( 7, 7 );
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();

        cache.put ( 8, 8 );
        cache.put ( 9, 9 );

        ok |= cache.getSilent ( 4 ) == null || die ();
        ok |= cache.getSilent ( 5 ) == null || die ();


        puts (cache);


        if ( !ok ) die ();

    }


    @Test
    public void test2 () {
        LruCache <Integer, Integer> cache = new LruSimpleConcurrentCache<> ( 400, false );


        cache.put ( 0, 0 );
        cache.put ( 1, 1 );

        cache.put ( 2, 2 );
        cache.put ( 3, 3 );


        for (int index =0 ; index < 5_000; index++) {
            cache.get(0);
            cache.get ( 1 );
            cache.put ( 2, index  );
            cache.put ( 3, index );
            cache.put(index, index);
        }

        boolean ok = cache.getSilent ( 0 ) == 0 || die ();
        ok |= cache.getSilent ( 1 ) == 1 || die ();
        ok |= cache.getSilent ( 2 ) != null || die ();
        ok |= cache.getSilent ( 3 ) != null || die ();

        ok |= cache.size () < 600 || die();
        if ( !ok ) die ();



    }

}
public interface LruCache<KEY, VALUE> {
    void put ( KEY key, VALUE value );

    VALUE get ( KEY key );

    VALUE getSilent ( KEY key );

    void remove ( KEY key );

    int size ();
}
import java.util.Deque;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Map;

public class LruCacheNormal<KEY, VALUE> implements LruCache<KEY,VALUE> {

    Map<KEY, VALUE> map = new HashMap<> ();
    Deque<KEY> queue = new LinkedList<> ();
    final int limit;


    public LruCacheNormal ( int limit ) {
        this.limit = limit;
    }

    public void put ( KEY key, VALUE value ) {
        VALUE oldValue = map.put ( key, value );

        /*If there was already an object under this key,
         then remove it before adding to queue
         Frequently used keys will be at the top so the search could be fast.
         */
        if ( oldValue != null ) {
            queue.removeFirstOccurrence ( key );
        }
        queue.addFirst ( key );

        if ( map.size () > limit ) {
            final KEY removedKey = queue.removeLast ();
            map.remove ( removedKey );
        }

    }


    public VALUE get ( KEY key ) {

        /* Frequently used keys will be at the top so the search could be fast.*/
        queue.removeFirstOccurrence ( key );
        queue.addFirst ( key );
        return map.get ( key );
    }


    public VALUE getSilent ( KEY key ) {

        return map.get ( key );
    }

    public void remove ( KEY key ) {

        /* Frequently used keys will be at the top so the search could be fast.*/
        queue.removeFirstOccurrence ( key );
        map.remove ( key );
    }

    public int size () {
        return map.size ();
    }

    public String toString() {
        return map.toString ();
    }
}
public class LruCacheTest {

    @Test
    public void test () {
        LruCache<Integer, Integer> cache = new LruCacheNormal<> ( 4 );


        cache.put ( 0, 0 );
        cache.put ( 1, 1 );

        cache.put ( 2, 2 );
        cache.put ( 3, 3 );


        boolean ok = cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 0 ) == 0 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();


        cache.put ( 4, 4 );
        cache.put ( 5, 5 );
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 0 ) == null || die ();
        ok |= cache.getSilent ( 1 ) == null || die ();
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();
        ok |= cache.getSilent ( 4 ) == 4 || die ();
        ok |= cache.getSilent ( 5 ) == 5 || die ();

        if ( !ok ) die ();

    }
}
import java.util.Deque;
import java.util.LinkedList;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.locks.ReentrantLock;

public class ConcurrentLruCache<KEY, VALUE> implements LruCache<KEY,VALUE> {

    private final ReentrantLock lock = new ReentrantLock ();


    private final Map<KEY, VALUE> map = new ConcurrentHashMap<> ();
    private final Deque<KEY> queue = new LinkedList<> ();
    private final int limit;


    public ConcurrentLruCache ( int limit ) {
        this.limit = limit;
    }

    @Override
    public void put ( KEY key, VALUE value ) {
        VALUE oldValue = map.put ( key, value );
        if ( oldValue != null ) {
            removeThenAddKey ( key );
        } else {
            addKey ( key );
        }
        if (map.size () > limit) {
            map.remove ( removeLast() );
        }
    }


    @Override
    public VALUE get ( KEY key ) {
        removeThenAddKey ( key );
        return map.get ( key );
    }


    private void addKey(KEY key) {
        lock.lock ();
        try {
            queue.addFirst ( key );
        } finally {
            lock.unlock ();
        }


    }

    private KEY removeLast( ) {
        lock.lock ();
        try {
            final KEY removedKey = queue.removeLast ();
            return removedKey;
        } finally {
            lock.unlock ();
        }
    }

    private void removeThenAddKey(KEY key) {
        lock.lock ();
        try {
            queue.removeFirstOccurrence ( key );
            queue.addFirst ( key );
        } finally {
            lock.unlock ();
        }

    }

    private void removeFirstOccurrence(KEY key) {
        lock.lock ();
        try {
            queue.removeFirstOccurrence ( key );
        } finally {
            lock.unlock ();
        }

    }


    @Override
    public VALUE getSilent ( KEY key ) {
        return map.get ( key );
    }

    @Override
    public void remove ( KEY key ) {
        removeFirstOccurrence ( key );
        map.remove ( key );
    }

    @Override
    public int size () {
        return map.size ();
    }

    public String toString () {
        return map.toString ();
    }
}
    Map<KEY, VALUE> map = new LinkedHashMap<KEY, VALUE> () {

        @Override
        protected boolean removeEldestEntry ( Map.Entry<KEY, VALUE> eldest ) {
            return this.size () > limit;
        }
    };
        cache.get ( 2 );
        cache.get ( 3 );
        cache.put ( 6, 6 );
        cache.put ( 7, 7 );
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();
        ok |= cache.getSilent ( 4 ) == null || die ();
        ok |= cache.getSilent ( 5 ) == null || die ();
import java.util.*;

public class FifoCache<KEY, VALUE> implements LruCache<KEY,VALUE> {

    final int limit;

    Map<KEY, VALUE> map = new LinkedHashMap<KEY, VALUE> () {

        @Override
        protected boolean removeEldestEntry ( Map.Entry<KEY, VALUE> eldest ) {
            return this.size () > limit;
        }
    };


    public LruCacheNormal ( int limit ) {
        this.limit = limit;
    }

    public void put ( KEY key, VALUE value ) {
         map.put ( key, value );


    }


    public VALUE get ( KEY key ) {

        return map.get ( key );
    }


    public VALUE getSilent ( KEY key ) {

        return map.get ( key );
    }

    public void remove ( KEY key ) {
        map.remove ( key );
    }

    public int size () {
        return map.size ();
    }

    public String toString() {
        return map.toString ();
    }
}
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;

public class LRUCache<K,V> {
  private ConcurrentHashMap<K,V> map;
  private ConcurrentLinkedQueue<K> queue;
  private final int size; 

  public LRUCache(int size) {
    this.size = size;
    map = new ConcurrentHashMap<K,V>(size);
    queue = new ConcurrentLinkedQueue<K>();
  }

  public V get(K key) {
    //Recently accessed, hence move it to the tail
    queue.remove(key);
    queue.add(key);
    return map.get(key);
  }

  public void put(K key, V value) {
    //ConcurrentHashMap doesn't allow null key or values
    if(key == null || value == null) throw new NullPointerException();
    if(map.containsKey(key) {
      queue.remove(key);
    }
    if(queue.size() >= size) {
      K lruKey = queue.poll();
      if(lruKey != null) {
        map.remove(lruKey);
      }
    }
    queue.add(key);
    map.put(key,value);
  }

}
import java.util.*;
public class Lru {

public static <K,V> Map<K,V> lruCache(final int maxSize) {
    return new LinkedHashMap<K, V>(maxSize*4/3, 0.75f, true) {

        private static final long serialVersionUID = -3588047435434569014L;

        @Override
        protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
            return size() > maxSize;
        }
    };
 }
 public static void main(String[] args ) {
    Map<Object, Object> lru = Lru.lruCache(2);      
    lru.put("1", "1");
    lru.put("2", "2");
    lru.put("3", "3");
    System.out.println(lru);
}
}
public class LRUCache<K, V> {

    private ConcurrentHashMap<K, V> map;
    private final Consumer<V> onRemove;
    private ConcurrentLinkedQueue<K> queue;
    private final int size;

    public LRUCache(int size, Consumer<V> onRemove) {
        this.size = size;
        this.onRemove = onRemove;
        this.map = new ConcurrentHashMap<>(size);
        this.queue = new ConcurrentLinkedQueue<>();
    }

    public V get(K key) {
        //Recently accessed, hence move it to the tail
        if (queue.remove(key)) {
            queue.add(key);
            return map.get(key);
        }
        return null;
    }

    public void put(K key, V value) {
        //ConcurrentHashMap doesn't allow null key or values
        if (key == null || value == null) throw new IllegalArgumentException("key and value cannot be null!");

        V existing = map.get(key);
        if (existing != null) {
            queue.remove(key);
            onRemove.accept(existing);
        }

        if (map.size() >= size) {
            K lruKey = queue.poll();
            if (lruKey != null) {
                V removed = map.remove(lruKey);
                onRemove.accept(removed);
            }
        }
        queue.add(key);
        map.put(key, value);
    }
}
public class Solution {

Map<Integer,Integer> cache;
int capacity;
public Solution(int capacity) {
    this.cache = new LinkedHashMap<Integer,Integer>(capacity); 
    this.capacity = capacity;

}

// This function returns false if key is not 
// present in cache. Else it moves the key to 
// front by first removing it and then adding 
// it, and returns true. 

public int get(int key) {
if (!cache.containsKey(key)) 
        return -1; 
    int value = cache.get(key);
    cache.remove(key); 
    cache.put(key,value); 
    return cache.get(key); 

}

public void set(int key, int value) {

    // If already present, then  
    // remove it first we are going to add later 
       if(cache.containsKey(key)){
        cache.remove(key);
    }
     // If cache size is full, remove the least 
    // recently used. 
    else if (cache.size() == capacity) { 
        Iterator<Integer> iterator = cache.keySet().iterator();
        cache.remove(iterator.next()); 
    }
        cache.put(key,value);
}