Java:HashMap性能与数百万项相比,如果需要搜索数值范围

Java:HashMap性能与数百万项相比,如果需要搜索数值范围,java,performance,hashmap,emulation,dispatch-table,Java,Performance,Hashmap,Emulation,Dispatch Table,如果可以的话,我想听听你的建议。我在我的PlayStation emulator中有一个方法(基于Java的大学论文,该论文已经完成)。它接受一个整数内存地址,然后返回该地址的字节-根据地址将读取重定向到RAM、BIOS ROM、给定的I/O端口等。目前,这是使用大量if-else案例实现的,这些案例检查地址的范围,并相应地从正确的位置读取,返回字节 这给了我大约9%的运行时间的性能冲击。我想我可以使用一个调度表来改进这一点——本质上是一个HashMap,它具有表示内存地址的自动装箱整数键和一个

如果可以的话,我想听听你的建议。我在我的PlayStation emulator中有一个方法(基于Java的大学论文,该论文已经完成)。它接受一个整数内存地址,然后返回该地址的字节-根据地址将读取重定向到RAM、BIOS ROM、给定的I/O端口等。目前,这是使用大量if-else案例实现的,这些案例检查地址的范围,并相应地从正确的位置读取,返回字节

这给了我大约9%的运行时间的性能冲击。我想我可以使用一个调度表来改进这一点——本质上是一个HashMap,它具有表示内存地址的自动装箱整数键和一个lambda值,用于根据地址处理字节返回。现在记住,考虑到PS1的内存映射,大约有260万个不同的可能地址,这将使用更多的内存-很好

让我困惑的是,它的性能比if-else语句的性能稍差,大约占整个运行时的12%。有没有更好的方法来做我正在做的事情?我不能使用数组解决方案(地址作为原始int索引,lambda存储在该索引中),因为地址空间中存在间隙,如果没有数量级的内存使用,这是无法处理的

我很欣赏任何其他可能使这个数字下降一点的想法——我意识到Java不是一种很好的仿真语言,但我论文的一部分是证明它可以工作(它确实可以)。非常感谢

问候,, 菲尔

编辑:

下面是readByte方法的完整代码(地址被转换为long,以允许在正常int值为负值时比较较低地址和较高地址):

/**
*这将根据地址从正确的区域读取。
*@param地址
*@返回
*/
公共字节读字节(整数地址){
long tempAddress=地址&0xFFFFFFFFFFFFL;
字节retVal=0;
如果(tempAddress>=0L&&tempAddress<0x200000L){//RAM
retVal=ram[(int)tempAddress];
}else如果(tempAddress>=0x1F000000L&&tempAddress<0x1F800000L){//扩展区域1
//现在什么都不要做
;
}如果(tempAddress>=0x1F800000L&&tempAddress<0x1F800400L){//Scratchpad
//如果启用,则从数据缓存草稿行读取
如果(scratchpadEnabled()){
tempAddress-=0x1F800000L;
retVal=scratchpad[(int)tempAddress];
}
}else如果(tempAddress>=0x1F801000L&&tempAddress<0x1F802000L){//I/O端口
if(tempAddress>=0x1F801000L&&tempAddress<0x1F801004L){
int移位=(int)(tempAddress&0x3L);
开关(换档){
案例0:
retVal=(字节)(扩展1BaseAddress>>>24);
打破
案例1:
retVal=(字节)(扩展1BaseAddress>>>16);
打破
案例2:
retVal=(字节)(扩展1BaseAddress>>>8);
打破
案例3:
retVal=(字节)扩展1BaseAddress;
打破
}
}
else if(tempAddress>=0x1F801004L&&tempAddress<0x1F801008L){
int移位=(int)(tempAddress&0x3L);
开关(换档){
案例0:
retVal=(字节)(expansion2BaseAddress>>>24);
打破
案例1:
retVal=(字节)(expansion2BaseAddress>>>16);
打破
案例2:
retVal=(字节)(expansion2BaseAddress>>>8);
打破
案例3:
retVal=(字节)扩展2BaseAddress;
打破
}
}else if(tempAddress>=0x1F801008L&&tempAddress<0x1F80100CL){
int移位=(int)(tempAddress&0x3L);
开关(换档){
案例0:
retVal=(字节)(扩展1延迟>>>24);
打破
案例1:
retVal=(字节)(扩展1延迟>>>16);
打破
案例2:
retVal=(字节)(扩展1延迟>>>8);
打破
案例3:
retVal=(字节)扩展1延迟;
打破
}
}否则如果(tempAddress>=0x1F80100CL&&tempAddress<0x1f801010){
int移位=(int)(tempAddress&0x3L);
开关(换档){
案例0:
retVal=(字节)(扩展3延迟>>>24);
打破
案例1:
retVal=(字节)(扩展3延迟>>>16);
打破
案例2:
retVal=(字节)(扩展3延迟>>>8);
打破
案例3:
retVal=(字节)扩展3延迟;
打破
}
}else if(tempAddress>=0x1F801010L&&tempAddress<0x1F801014L){
int移位=(int)(tempAddress&0x3L);
开关(换档){
案例0:
retVal=(字节)(biosRomDelaySize>>>24);
打破
案例1:
retVal=(字节)(biosRomDelaySize>>>16);
打破
案例2:
retVal=(字节)(biosRomDelaySize>>>8);
打破
案例3:
retVal=(字节)biosRomDelaySize;
打破
}
}else if(tempAddress>=0x1F801014L&&tempAddress<0x1F801018L){
int移位=(int)(tempAddress&0x3L);
开关(换档)
/**
 * This reads from the correct area depending on the address.
 * @param address
 * @return 
 */
public byte readByte(int address) {

    long tempAddress = address & 0xFFFFFFFFL;
    byte retVal = 0;      

    if (tempAddress >= 0L && tempAddress < 0x200000L) { // RAM
        retVal = ram[(int)tempAddress];
    } else if (tempAddress >= 0x1F000000L && tempAddress < 0x1F800000L) { // Expansion Region 1
        // do nothing for now
        ;
    } else if (tempAddress >= 0x1F800000L && tempAddress < 0x1F800400L) { // Scratchpad
        // read from data cache scratchpad if enabled
        if (scratchpadEnabled()) {
            tempAddress -= 0x1F800000L;
            retVal = scratchpad[(int)tempAddress];
        }
    } else if (tempAddress >= 0x1F801000L && tempAddress < 0x1F802000L) { // I/O Ports
        if (tempAddress >= 0x1F801000L && tempAddress < 0x1F801004L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(expansion1BaseAddress >>> 24);
                    break;
                case 1:
                    retVal = (byte)(expansion1BaseAddress >>> 16);
                    break;
                case 2:
                    retVal = (byte)(expansion1BaseAddress >>> 8);
                    break;
                case 3:
                    retVal = (byte)expansion1BaseAddress;
                    break;
            }
        }
        else if (tempAddress >= 0x1F801004L && tempAddress < 0x1F801008L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(expansion2BaseAddress >>> 24);
                    break;
                case 1:
                    retVal = (byte)(expansion2BaseAddress >>> 16);
                    break;
                case 2:
                    retVal = (byte)(expansion2BaseAddress >>> 8);
                    break;
                case 3:
                    retVal = (byte)expansion2BaseAddress;
                    break;
            }
        } else if (tempAddress >= 0x1F801008L && tempAddress < 0x1F80100CL) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(expansion1DelaySize >>> 24);
                    break;
                case 1:
                    retVal = (byte)(expansion1DelaySize >>> 16);
                    break;
                case 2:
                    retVal = (byte)(expansion1DelaySize >>> 8);
                    break;
                case 3:
                    retVal = (byte)expansion1DelaySize;
                    break;
            }
        } else if (tempAddress >= 0x1F80100CL && tempAddress < 0x1F801010L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(expansion3DelaySize >>> 24);
                    break;
                case 1:
                    retVal = (byte)(expansion3DelaySize >>> 16);
                    break;
                case 2:
                    retVal = (byte)(expansion3DelaySize >>> 8);
                    break;
                case 3:
                    retVal = (byte)expansion3DelaySize;
                    break;
            }
        } else if (tempAddress >= 0x1F801010L && tempAddress < 0x1F801014L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(biosRomDelaySize >>> 24);
                    break;
                case 1:
                    retVal = (byte)(biosRomDelaySize >>> 16);
                    break;
                case 2:
                    retVal = (byte)(biosRomDelaySize >>> 8);
                    break;
                case 3:
                    retVal = (byte)biosRomDelaySize;
                    break;
            }
        } else if (tempAddress >= 0x1F801014L && tempAddress < 0x1F801018L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(spuDelaySize >>> 24);
                    break;
                case 1:
                    retVal = (byte)(spuDelaySize >>> 16);
                    break;
                case 2:
                    retVal = (byte)(spuDelaySize >>> 8);
                    break;
                case 3:
                    retVal = (byte)spuDelaySize;
                    break;
            }
        } else if (tempAddress >= 0x1F801018L && tempAddress < 0x1F80101CL) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(cdromDelaySize >>> 24);
                    break;
                case 1:
                    retVal = (byte)(cdromDelaySize >>> 16);
                    break;
                case 2:
                    retVal = (byte)(cdromDelaySize >>> 8);
                    break;
                case 3:
                    retVal = (byte)cdromDelaySize;
                    break;
            }
        } else if (tempAddress >= 0x1F80101CL && tempAddress < 0x1F801020L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(expansion2DelaySize >>> 24);
                    break;
                case 1:
                    retVal = (byte)(expansion2DelaySize >>> 16);
                    break;
                case 2:
                    retVal = (byte)(expansion2DelaySize >>> 8);
                    break;
                case 3:
                    retVal = (byte)expansion2DelaySize;
                    break;
            }
        } else if (tempAddress >= 0x1F801020L && tempAddress < 0x1F801024L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(commonDelay >>> 24);
                    break;
                case 1:
                    retVal = (byte)(commonDelay >>> 16);
                    break;
                case 2:
                    retVal = (byte)(commonDelay >>> 8);
                    break;
                case 3:
                    retVal = (byte)commonDelay;
                    break;
            }
        } else if (tempAddress >= 0x1F801040L && tempAddress < 0x1F801050L) {
            // read from ControllerIO object
            retVal = cio.readByte((int)tempAddress);
        } else if (tempAddress >= 0x1F801060L && tempAddress < 0x1F801064L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(ramSize >>> 24);
                    break;
                case 1:
                    retVal = (byte)(ramSize >>> 16);
                    break;
                case 2:
                    retVal = (byte)(ramSize >>> 8);
                    break;
                case 3:
                    retVal = (byte)ramSize;
                    break;
            }
        }
        else if (tempAddress >= 0x1F801070L && tempAddress < 0x1F801074L) { // Interrupt Status Register
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(interruptStatusReg >>> 24);
                    break;
                case 1:
                    retVal = (byte)(interruptStatusReg >>> 16);
                    break;
                case 2:
                    retVal = (byte)(interruptStatusReg >>> 8);
                    break;
                case 3:
                    retVal = (byte)interruptStatusReg;
                    break;    
            }
        }
        else if (tempAddress >= 0x1F801074L && tempAddress < 0x1F801078L) { // Interrupt Mask Register
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(interruptMaskReg >>> 24);
                    break;
                case 1:
                    retVal = (byte)(interruptMaskReg >>> 16);
                    break;
                case 2:
                    retVal = (byte)(interruptMaskReg >>> 8);
                    break;
                case 3:
                    retVal = (byte)interruptMaskReg;
                    break;    
            }
        }
        else if (tempAddress >= 0x1F801080L && tempAddress < 0x1F801100L) {
            retVal = dma.readByte(address);
        }
        else if (tempAddress >= 0x1F801100L && tempAddress < 0x1F801104L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(timer0.counterValueRead() >>> 24);
                    break;
                case 1:
                    retVal = (byte)(timer0.counterValueRead() >>> 16);
                    break;
                case 2:
                    retVal = (byte)(timer0.counterValueRead() >>> 8);
                    break;
                case 3:
                    retVal = (byte)timer0.counterValueRead();
                    break;
            }
        }
        else if (tempAddress >= 0x1F801104L && tempAddress < 0x1F801108L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(timer0.counterModeRead(false) >>> 24);
                    break;
                case 1:
                    retVal = (byte)(timer0.counterModeRead(false) >>> 16);
                    break;
                case 2:
                    retVal = (byte)(timer0.counterModeRead(false) >>> 8);
                    break;
                case 3:
                    retVal = (byte)timer0.counterModeRead(false);
                    break;
            }
        }
        else if (tempAddress >= 0x1F801108L && tempAddress < 0x1F80110CL) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(timer0.counterTargetRead() >>> 24);
                    break;
                case 1:
                    retVal = (byte)(timer0.counterTargetRead() >>> 16);
                    break;
                case 2:
                    retVal = (byte)(timer0.counterTargetRead() >>> 8);
                    break;
                case 3:
                    retVal = (byte)timer0.counterTargetRead();
                    break;
            }
        }
        else if (tempAddress >= 0x1F801110L && tempAddress < 0x1F801114L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(timer1.counterValueRead() >>> 24);
                    break;
                case 1:
                    retVal = (byte)(timer1.counterValueRead() >>> 16);
                    break;
                case 2:
                    retVal = (byte)(timer1.counterValueRead() >>> 8);
                    break;
                case 3:
                    retVal = (byte)timer1.counterValueRead();
                    break;
            }
        }
        else if (tempAddress >= 0x1F801114L && tempAddress < 0x1F801118L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(timer1.counterModeRead(false) >>> 24);
                    break;
                case 1:
                    retVal = (byte)(timer1.counterModeRead(false) >>> 16);
                    break;
                case 2:
                    retVal = (byte)(timer1.counterModeRead(false) >>> 8);
                    break;
                case 3:
                    retVal = (byte)timer1.counterModeRead(false);
                    break;
            }
        }
        else if (tempAddress >= 0x1F801118L && tempAddress < 0x1F80111CL) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(timer1.counterTargetRead() >>> 24);
                    break;
                case 1:
                    retVal = (byte)(timer1.counterTargetRead() >>> 16);
                    break;
                case 2:
                    retVal = (byte)(timer1.counterTargetRead() >>> 8);
                    break;
                case 3:
                    retVal = (byte)timer1.counterTargetRead();
                    break;
            }
        }
        else if (tempAddress >= 0x1F801120L && tempAddress < 0x1F801124L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(timer2.counterValueRead() >>> 24);
                    break;
                case 1:
                    retVal = (byte)(timer2.counterValueRead() >>> 16);
                    break;
                case 2:
                    retVal = (byte)(timer2.counterValueRead() >>> 8);
                    break;
                case 3:
                    retVal = (byte)timer2.counterValueRead();
                    break;
            }
        }
        else if (tempAddress >= 0x1F801124L && tempAddress < 0x1F801128L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(timer2.counterModeRead(false) >>> 24);
                    break;
                case 1:
                    retVal = (byte)(timer2.counterModeRead(false) >>> 16);
                    break;
                case 2:
                    retVal = (byte)(timer2.counterModeRead(false) >>> 8);
                    break;
                case 3:
                    retVal = (byte)timer2.counterModeRead(false);
                    break;
            }
        }
        else if (tempAddress >= 0x1F801128L && tempAddress < 0x1F80112CL) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(timer2.counterTargetRead() >>> 24);
                    break;
                case 1:
                    retVal = (byte)(timer2.counterTargetRead() >>> 16);
                    break;
                case 2:
                    retVal = (byte)(timer2.counterTargetRead() >>> 8);
                    break;
                case 3:
                    retVal = (byte)timer2.counterTargetRead();
                    break;
            }
        }
        else if (tempAddress >= 0x1F801810L && tempAddress < 0x1F801814L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(gpu.readResponse() >>> 24);
                    break;
                case 1:
                    retVal = (byte)(gpu.readResponse() >>> 16);
                    break;
                case 2:
                    retVal = (byte)(gpu.readResponse() >>> 8);
                    break;
                case 3:
                    retVal = (byte)gpu.readResponse();
                    break;
            }
        }
        else if (tempAddress >= 0x1F801814L && tempAddress < 0x1F801818L) {
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(gpu.readStatus() >>> 24);
                    break;
                case 1:
                    retVal = (byte)(gpu.readStatus() >>> 16);
                    break;
                case 2:
                    retVal = (byte)(gpu.readStatus() >>> 8);
                    break;
                case 3:
                    retVal = (byte)gpu.readStatus();
                    break;
            }
        }
        else if (tempAddress >= 0x1F801800L && tempAddress < 0x1F801804L) { // CDROM
            switch ((int)tempAddress & 0xF) {
                case 0:
                    retVal = cdrom.read1800();
                    break;
                case 1:
                    retVal = cdrom.read1801();
                    break;
                case 2:
                    retVal = cdrom.read1802();
                    break;
                case 3:
                    retVal = cdrom.read1803();
                    break;
            }
        }
        else if (tempAddress >= 0x1F801C00L && tempAddress < 0x1F802000L) {
            // fake SPU read
            retVal = spu.readByte(address);
        }
    } else if (tempAddress >= 0x1F802000L && tempAddress < 0x1F803000L) { // Expansion Region 2 (I/O Ports)
        // read from BIOS post register
        if (tempAddress == 0x1F802041L) {
            retVal = biosPost;
        }
    } else if (tempAddress >= 0x1FA00000L && tempAddress < 0x1FC00000L) { // Expansion Region 3 (Multipurpose)
        // do nothing for now
        ;
    } else if (tempAddress >= 0x1FC00000L && tempAddress < 0x1FC80000L) { // BIOS ROM
        // read from memory mapped BIOS file
        tempAddress -= 0x1FC00000L;
        retVal = biosBuffer.get((int)tempAddress);
    } else if (tempAddress >= 0xFFFE0000L && tempAddress < 0xFFFE0200L) { // I/O Ports (Cache Control)
        if (tempAddress >= 0xFFFE0130L && tempAddress < 0xFFFE0134L) { // Cache Control Register
            int shift = (int)(tempAddress & 0x3L);
            switch (shift) {
                case 0:
                    retVal = (byte)(cacheControlReg >>> 24);
                    break;
                case 1:
                    retVal = (byte)(cacheControlReg >>> 16);
                    break;
                case 2:
                    retVal = (byte)(cacheControlReg >>> 8);
                    break;
                case 3:
                    retVal = (byte)cacheControlReg;
                    break;    
            }
        }            
    }

    return retVal;
}
...
else if (tempAddress >= 0x1F801104L && tempAddress < 0x1F801108L) {
  return timer0.read(tempAddress);
}
...
interface Location {
  byte read(long address);
}

abstract class IntWordLocation implements Location {
  @Override
  final byte read(long address) {
    int value = readInt(address & 0xfffffffd); // clear lower two bits;
    int shift = 3 - (int) (address & 0x3);
    for (int i = 0; i < shift; i++) { // replaces switch statement
      value = value >>> 8;
    }
    return (byte) value;
  }

  abstract protected int readInt(long int);
}
RangeMap<Long, Location> addressRanges =
  new ImmutableRangeMap.Builder<Integer, Location>()
    .put(Range.closedOpen(0L, 0x200000L), ramLocation)
    .put(Range.closedOpen(0x1F000000L, 0x1F800000L), NO_OP_LOCATION)
    .put(Range.closedOpen(0x1F800000L, 0x1F800400L), scratchpadLocation)
    // ...
    .build();
public byte readByte(int address) {
  return addressRanges.get(address).read(address);
}
 KUSEG     KSEG0     KSEG1
  00000000h 80000000h A0000000h  2048K  Main RAM (first 64K reserved for BIOS)
  1F000000h 9F000000h BF000000h  8192K  Expansion Region 1 (ROM/RAM)
  1F800000h 9F800000h    --      1K     Scratchpad (D-Cache used as Fast RAM)
  1F801000h 9F801000h BF801000h  8K     I/O Ports
  1F802000h 9F802000h BF802000h  8K     Expansion Region 2 (I/O Ports)
  1FA00000h 9FA00000h BFA00000h  2048K  Expansion Region 3 (whatever purpose)
  1FC00000h 9FC00000h BFC00000h  512K   BIOS ROM (Kernel) (4096K max)
        FFFE0000h (KSEG2)        0.5K   I/O Ports (Cache Control)
byte readMemory(int address) 
{
  if ((address & 0xFF000000) == 0xFF000000)
    return ioPorts.read(address);

  // remove most significative nibble, we don't need it
  address &= 0x0FFFFFFF;

  // 0xF000000 zone
  // according to bios rom size you could need a different kind of comparison since it may wrap over 0xFFFFFFF
  if ((address & 0xF000000) == 0xF000000)
  {
    // now your address space is just from 0xF000000 to 0xFC00000 + size of BIOS ROM (4mb max?)
  }
  else
  {
    // we don't know if you map bios together with ram or separately
    return mainRam.readMemory(address);
  }
}
F000000h
F800000h
F801000h
F802000h
FA00000h
FC00000h 
address = (address >>> 12) & 0xFFF;