Pandas 如何将scipy优化曲线拟合与panda df结合使用

Pandas 如何将scipy优化曲线拟合与panda df结合使用,pandas,numpy,matplotlib,scipy,curve-fitting,Pandas,Numpy,Matplotlib,Scipy,Curve Fitting,这是我在这里的第一篇帖子,我花了好几个小时寻找这个答案,但我似乎无法找到答案。我曾经用pandas将.csv传递给np矩阵。从那里,我试图应用一个简单的曲线拟合,但我得到的输出总是错误的。代码将绘制错误的配合,而不会绘制数据 import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit df = pd.read_csv("Results.cs

这是我在这里的第一篇帖子,我花了好几个小时寻找这个答案,但我似乎无法找到答案。我曾经用pandas将.csv传递给np矩阵。从那里,我试图应用一个简单的曲线拟合,但我得到的输出总是错误的。代码将绘制错误的配合,而不会绘制数据

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

df = pd.read_csv("Results.csv")
xdata = df['Frame'].as_matrix()
ydata = df['Area'].as_matrix()

def func(x, a, b, c):
    return (a*np.sin(b*x))+(c * np.exp(x))
popt, pcov = curve_fit(func, xdata, ydata)

plt.plot(xdata, func(xdata, *popt), 'r-',
        label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))
popt, pcov = curve_fit(func, xdata, ydata)

plt.plot(xdata, func(xdata, *popt), 'g--',
          label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
这就是数据的样子:

提前感谢您的帮助。

您的模型包含“exp(x)”,数据文件包含x个1000的值,这会导致数学溢出错误,无论起始值如何-优化器无法找到解决该问题的方法,您必须更改方程式以适应此数据集。我可以建议其他方程式,但此数据集无法与公布的方程式相匹配

编辑:根据您关于除以100的评论,以下是使用scipy的差分进化遗传算法模块查找初始参数估计的代码,该模块使用拉丁超立方体算法确保对参数空间进行彻底搜索-该算法需要搜索范围,参数范围比精确的初始参数值更容易找到。在这里,我尝试了一些范围,并得到了可能是最好的适合你可以在这里从我所看到的


请您发布一个数据文件的链接好吗?关于拟合,最棘手的部分是找到好的起始值。如果没有给出起始值,
curve\u fit
将假定它们都是一个,
a=b=c=1
。我想在你的例子中,这些距离实际的最佳拟合太远了,以至于拟合挂在局部最优。相反,从一个更有用值的向量开始,即更接近您期望的值。@ImportanceOfBeingErnest绝对正确。我想提供一个使用scipy的差分进化遗传算法模块生成初始参数估计值的示例,这就是我请求数据文件链接的原因。@JamesPhillips也许最好将OP指向前面的答案,该答案显示了这一点(也可能以重复形式关闭),因为如果好的答案散布在不同的问题上并没有多大帮助。@JamesPhillips非常感谢您的帮助!如果我将x值除以100,它会纠正问题吗?
import pandas as pd
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
import warnings


df = pd.read_csv("Results.csv")
xData = df['Frame'].as_matrix() / 100.0
yData = df['Area'].as_matrix()

def func(x, a, b, c):
    return (a*numpy.sin(b*x))+(c * numpy.exp(x))


# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
    warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm
    val = func(xData, *parameterTuple)
    return numpy.sum((yData - val) ** 2.0)


def generate_Initial_Parameters():

    parameterBounds = []
    parameterBounds.append([0.0, 100.0]) # search bounds for a
    parameterBounds.append([0.0, 1.0]) # search bounds for b
    parameterBounds.append([0.0, 1.0]) # search bounds for c

    # "seed" the numpy random number generator for repeatable results
    result = differential_evolution(sumOfSquaredError, parameterBounds, seed=3)
    return result.x

# by default, differential_evolution completes by calling curve_fit() using parameter bounds
geneticParameters = generate_Initial_Parameters()

# now call curve_fit without passing bounds from the genetic algorithm,
# just in case the best fit parameters are aoutside those bounds
fittedParameters, pcov = curve_fit(func, xData, yData, geneticParameters)
print('Fitted parameters:', fittedParameters)
print()

modelPredictions = func(xData, *fittedParameters) 

absError = modelPredictions - yData

SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))

print()
print('RMSE:', RMSE)
print('R-squared:', Rsquared)

print()


##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    # first the raw data as a scatter plot
    axes.plot(xData, yData,  'D')

    # create data for the fitted equation plot
    xModel = numpy.linspace(min(xData), max(xData))
    yModel = func(xModel, *fittedParameters)

    # now the model as a line plot
    axes.plot(xModel, yModel)

    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot

graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)