Warning: file_get_contents(/data/phpspider/zhask/data//catemap/0/windows/16.json): failed to open stream: No such file or directory in /data/phpspider/zhask/libs/function.php on line 167

Warning: Invalid argument supplied for foreach() in /data/phpspider/zhask/libs/tag.function.php on line 1116

Notice: Undefined index: in /data/phpspider/zhask/libs/function.php on line 180

Warning: array_chunk() expects parameter 1 to be array, null given in /data/phpspider/zhask/libs/function.php on line 181
Windows 如何解决当稀疏数组变大时,元素不';你不再看了吗?_Windows_Julia_Sparse Matrix - Fatal编程技术网

Windows 如何解决当稀疏数组变大时,元素不';你不再看了吗?

Windows 如何解决当稀疏数组变大时,元素不';你不再看了吗?,windows,julia,sparse-matrix,Windows,Julia,Sparse Matrix,当我想在Julia中打印大型稀疏数组时,稀疏数组的元素不会显示。唯一打印的东西是数组中元素不等于零的位置上的点。 例如: 对于小型阵列,它可以正常工作 julia> sparse([1 0 ; 0 1]) 2×2 SparseMatrixCSC{Int64, Int64} with 2 stored entries: 1 ⋅ ⋅ 1 此问题仅在我使用Windows时发生。在Linux上,即使数组变大,也会打印出正确显示的特定元素。像这样: julia> sparse([1.

当我想在Julia中打印大型稀疏数组时,稀疏数组的元素不会显示。唯一打印的东西是数组中元素不等于零的位置上的点。 例如:

对于小型阵列,它可以正常工作

julia> sparse([1 0 ; 0 1])
2×2 SparseMatrixCSC{Int64, Int64} with 2 stored entries:
 1  ⋅
 ⋅  1
此问题仅在我使用Windows时发生。在Linux上,即使数组变大,也会打印出正确显示的特定元素。像这样:

julia> sparse([1.0, 0.0, 1.0])
3-element SparseVector{Float64, Int64} with 2 stored entries:
  [1]  =  1.0
  [3]  =  1.0

有没有办法解决这个问题?

我只想在显示稀疏数组时具体化它:

julia> Matrix(sparse(I,16,16))
16×16 Matrix{Bool}:
 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0
 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
 0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
 0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
 0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
 0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0
 0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0
 0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0
 0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0
 0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0
 0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1

但您可能想要的是
基。打印矩阵

julia> Base.print_matrix(stdout, sparse(2I,18,18))
 2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2

是的,我试过了,效果不错,但我只是想知道为什么它有这么奇怪的行为,如果没有解决办法的话。因为首先,它保存了所有不必要的零,其次,我认为如果它是稀疏的,它更容易被看到。我正在使用的数组可能非常大:D
Base.print\u matrix
?分界点是16x16,所以你需要它叫你自己是的,这就是解决方案。非常感谢。你可能也知道我如何得到上面例子中在Linux上得到的表示形式吗?你的最后一个例子是向量而不是矩阵,它将以同样的方式在Windows上打印。
julia> Base.print_matrix(stdout, sparse(2I,18,18))
 2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2  ⋅
 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  2