Algorithm 不同语言中的阶乘算法

Algorithm 不同语言中的阶乘算法,algorithm,language-agnostic,Algorithm,Language Agnostic,我想看看你能想出的所有不同的方法,对于阶乘子程序,或程序。希望是任何人都能来这里,看看他们是否想学习一门新的语言 思想: 程序性 功能性 面向对象 一行 模糊的 古怪的 错误代码 基本上我想看一个例子,不同的算法编写方法,以及它们在不同语言中的表现 请将每个条目限制为一个示例。 如果你想强调一种特定的风格、语言,或者仅仅是一个经过深思熟虑的想法,并且适合在一篇文章中发表,我允许你在每个答案中有不止一个例子 唯一真正的要求是它必须找到给定参数的阶乘,用所有语言表示 要有创意! 建议准则: #

我想看看你能想出的所有不同的方法,对于阶乘子程序,或程序。希望是任何人都能来这里,看看他们是否想学习一门新的语言

思想:
  • 程序性
  • 功能性
  • 面向对象
  • 一行
  • 模糊的
  • 古怪的
  • 错误代码
基本上我想看一个例子,不同的算法编写方法,以及它们在不同语言中的表现

请将每个条目限制为一个示例。 如果你想强调一种特定的风格、语言,或者仅仅是一个经过深思熟虑的想法,并且适合在一篇文章中发表,我允许你在每个答案中有不止一个例子

唯一真正的要求是它必须找到给定参数的阶乘,用所有语言表示

要有创意! 建议准则: #语言名称:可选样式类型 -可选要点 代码在这里 其他信息文本在这里 我会局部编辑任何没有合适格式的答案。

Haskell:

ones = 1 : ones
integers   = head ones     : zipWith (+) integers   (tail ones)
factorials = head integers : zipWith (*) factorials (tail integers)

方案

下面是一个简单的递归定义:

(define (factorial x)
  (if (= x 0) 1
      (* x (factorial (- x 1)))))
在Scheme中,尾部递归函数使用常量堆栈空间。下面是一个尾部递归的阶乘版本:

(define factorial
  (letrec ((fact (lambda (x accum)
                   (if (= x 0) accum
                       (fact (- x 1) (* accum x))))))
    (lambda (x)
      (fact x 1))))
代码: 对不起,我无法抗拒xD

HAI
CAN HAS STDIO?
I HAS A VAR
I HAS A INT
I HAS A CHEEZBURGER
I HAS A FACTORIALNUM
IM IN YR LOOP
    UP VAR!!1
    TIEMZD INT!![CHEEZBURGER]
    UP FACTORIALNUM!!1
    IZ VAR BIGGER THAN FACTORIALNUM? GTFO
IM OUTTA YR LOOP
U SEEZ INT
KTHXBYE    

这样使用:

factorial!(5)
F#:功能性 直截了当地说: C++:模板元编程 使用经典的enum hack

template<unsigned int n>
struct factorial {
    enum { result = n * factorial<n - 1>::result };
};

template<>
struct factorial<0> {
    enum { result = 1 };
};
模板
结构阶乘{
枚举{result=n*阶乘::result};
};
模板
结构阶乘{
枚举{result=1};
};
用法

const unsigned int x = factorial<4>::result;
const unsigned int x=factorial::result;
Factorial在编译时根据模板参数n完全计算。因此,一旦编译器完成它的工作,factorial::result就是一个常量。

x86-64汇编:Procedural 您可以从C调用它(仅在linux amd64上使用GCC进行测试)。 装配采用nasm进行

section .text
    global factorial
; factorial in x86-64 - n is passed in via RDI register
; takes a 64-bit unsigned integer
; returns a 64-bit unsigned integer in RAX register
; C declaration in GCC:
;   extern unsigned long long factorial(unsigned long long n);
factorial:
    enter 0,0
    ; n is placed in rdi by caller
    mov rax, 1 ; factorial = 1
    mov rcx, 2 ; i = 2
loopstart:
    cmp rcx, rdi
    ja loopend
    mul rcx ; factorial *= i
    inc rcx
    jmp loopstart
loopend:
    leave
    ret
动力壳

function factorial( [int] $n ) 
{ 
    $result = 1; 

    if ( $n -gt 1 ) 
    { 
        $result = $n * ( factorial ( $n - 1 ) ) 
    } 

    $result 
}
这是一条单行线:

$n..1 | % {$result = 1}{$result *= $_}{$result}
递归序言 尾部递归序言
奇怪的例子?使用gamma函数怎么样!因为,
gamman=(n-1)

OCaml:使用Gamma
让rec gamma z=
设pi=4.0*。atan 1.0英寸
如果z<0.5,则
pi/。((sin(pi*.z))*(gamma(1.0-.z)))
其他的
设常数=0.99999999980993;676.520368218851;-1259.139216722428;
771.32342877765313; -176.61502916214059; 12.507343278686905;
-0.13857109526572012;9.984369578019516E-6;1.5056327351493116e-7;
|] 
在里面
设z=z-。1.0英寸
让结果=Array.fold\u right
(乐趣x y->x+.y)
(Array.mapi)
(乐趣i x->如果i=0那么x其他x/(z+(浮点i)))
常数
)
0
在里面
设x=z+。(float(Array.length consts))-。1.5英寸
设final=(sqrt(2.0*.pi))*。
(x**(z+.0.5))*。
(exp(-.x))*。结果
在里面
最终的
设阶乘_gamma n=_float的int_(gamma(float(n+1)))
BASIC:老派 Java 1.6:递归、记忆化(用于后续调用)
private static Map\u results=new HashMap()
公共静态BigInteger阶乘(BigInteger n){
如果(0>=n.compareTo(BigInteger.ONE))
返回BigInteger.ONE.max(n);
如果(_results.containsKey(n))
返回_results.get(n);
BigInteger结果=阶乘(n.减法(BigInteger.1))。乘(n);
_结果:put(n,result);
返回结果;
}
批次(NT):

用法: C:>factorial.bat15

C#查找:

没有什么要计算的,只是查一下。要扩展它,请在表中再添加8个数字,64位整数已达到极限。除此之外,还需要一个BigNum类

public static int Factorial(int f)
{ 
    if (f<0 || f>12)
    {
        throw new ArgumentException("Out of range for integer factorial");
    }
    int [] fact={1,1,2,6,24,120,720,5040,40320,362880,3628800,
                 39916800,479001600};
    return fact[f];
}
公共静态整数阶乘(intf)
{ 
如果(f12)
{
抛出新ArgumentException(“超出整数阶乘的范围”);
}
int[]事实={1,1,2,6,24120720504040320328803628862800,
39916800,479001600};
返回事实[f];
}
空白 . . . . . . . . . . . . . . . . . . . . . . . . . . 很难让它正确地显示在这里,但现在我尝试从预览中复制它,它工作了。您需要输入号码并按enter键。

你的纯函数式编程噩梦成真了

唯一具有以下特性的:

    一个纯粹的功能基础、核心和库---事实上,这里有完整的API:
  • 甚至没有
  • 不需要或不允许使用列表
  • 没有显式递归,但是
  • 一种简单的I/O机制
这是一个带括号的阶乘代码:

K(SII(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(K(S(K(S(K(S(SI(K(S(K(S(S(KS)K)I))
 (S(S(KS)K)(SII(S(S(KS)K)I))))))))K))))))(S(K(S(K(S(SI(K(S(K(S(SI(K(S(K(S(S(KS)K)I))
 (S(S(KS)K)(SII(S(S(KS)K)I))(S(S(KS)K))(S(SII)I(S(S(KS)K)I))))))))K)))))))
 (S(S(KS)K)(K(S(S(KS)K)))))))))(K(S(K(S(S(KS)K)))K))))(SII))II)
特点:

  • 没有减法或条件
  • 打印所有阶乘(如果等待时间足够长)
  • 使用第二层Church数字将第N个阶乘转换为N!星号后跟换行符
  • 使用用于递归的
如果您有兴趣尝试理解它,下面是通过Lazier编译器运行的Scheme源代码:

(lazy-def '(fac input)
   '((Y (lambda (f n a) ((lambda (b) ((cons 10) ((b (cons 42)) (f (1+ n) b))))
       (* a n)))) 1 1))
(有关Y、cons、1、10、42、1+和*)的适当定义)

编辑:

十进制K阶乘 (否则我会粘贴它)。例如,在Unix提示符下:

$ echo "4" | ./lazy facdec.lazy 24 $ echo "5" | ./lazy facdec.lazy 120 $echo“4”|/lazy facdec.lazy 24 $echo“5”|/lazy facdec.lazy 120 对于上面的数字,比如说5,速度相当慢

代码有点臃肿,因为我们必须包括(用lambda演算解释器编写的代码和用Haskell编写的LC-to-Lazy K编译器)。

C#:LINQ Python:函数式,一行程序 注:

  • 它支持大整数。例如:


  • 当n<0时,它不起作用
  • $n..1 | % {$result = 1}{$result *= $_}{$result}
fac(0,1).
fac(N,X) :- N1 is N -1, fac(N1, T), X is N * T.
fac(0,N,N).
fac(X,N,T) :- A is N * X, X1 is X - 1, fac(X1,A,T).
fac(N,T) :- fac(N,1,T).
let rec gamma z =
    let pi = 4.0 *. atan 1.0 in
    if z < 0.5 then
        pi /. ((sin (pi*.z)) *. (gamma (1.0 -. z)))
    else
        let consts = [| 0.99999999999980993; 676.5203681218851; -1259.1392167224028;
                        771.32342877765313; -176.61502916214059; 12.507343278686905;
                 -0.13857109526572012; 9.9843695780195716e-6; 1.5056327351493116e-7;
                     |] 
        in
        let z = z -. 1.0 in
        let results = Array.fold_right 
                          (fun x y -> x +. y)
                          (Array.mapi 
                              (fun i x -> if i = 0 then x else x /. (z+.(float i)))
                              consts
                          )
                          0.0
        in
        let x = z +. (float (Array.length consts)) -. 1.5 in
        let final = (sqrt (2.0*.pi)) *. 
                    (x ** (z+.0.5)) *.
                    (exp (-.x)) *. result
        in
        final

let factorial_gamma n = int_of_float (gamma (float (n+1)))
10 HOME
20 INPUT N
30 LET ANS = 1
40 FOR I = 1 TO N
50   ANS = ANS * I
60 NEXT I
70 PRINT ANS
private static Map<BigInteger, BigInteger> _results = new HashMap()

public static BigInteger factorial(BigInteger n){
    if (0 >= n.compareTo(BigInteger.ONE))
       return BigInteger.ONE.max(n);
    if (_results.containsKey(n))
       return _results.get(n);
    BigInteger result = factorial(n.subtract(BigInteger.ONE)).multiply(n);
    _results.put(n, result);
    return result;
}
@echo off

set n=%1
set result=1

for /l %%i in (%n%, -1, 1) do (
    set /a result=result * %%i
)

echo %result%
public static int Factorial(int f)
{ 
    if (f<0 || f>12)
    {
        throw new ArgumentException("Out of range for integer factorial");
    }
    int [] fact={1,1,2,6,24,120,720,5040,40320,362880,3628800,
                 39916800,479001600};
    return fact[f];
}
. . . . . . . . . . . . . . . . . . . . . . . . . .
K(SII(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(K(S(K(S(K(S(SI(K(S(K(S(S(KS)K)I))
 (S(S(KS)K)(SII(S(S(KS)K)I))))))))K))))))(S(K(S(K(S(SI(K(S(K(S(SI(K(S(K(S(S(KS)K)I))
 (S(S(KS)K)(SII(S(S(KS)K)I))(S(S(KS)K))(S(SII)I(S(S(KS)K)I))))))))K)))))))
 (S(S(KS)K)(K(S(S(KS)K)))))))))(K(S(K(S(S(KS)K)))K))))(SII))II)
(lazy-def '(fac input)
   '((Y (lambda (f n a) ((lambda (b) ((cons 10) ((b (cons 42)) (f (1+ n) b))))
       (* a n)))) 1 1))
$ echo "4" | ./lazy facdec.lazy 24 $ echo "5" | ./lazy facdec.lazy 120
    public static int factorial(int n)
    {
        return (Enumerable.Range(1, n).Aggregate(1, (previous, value) => previous * value));
    }
factorial = lambda n: reduce(lambda x,y: x*y, range(1, n+1), 1)
print factorial(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915\
608941463976156518286253697920827223758251185210916864000000000000000000000000
curl http://www.google.com/search?q=170!
curl http://www58.wolframalpha.com/input/?i=171!
(factorial=Hash.new{|h,k|k*h[k-1]})[1]=1
    
factorial[5]
 => 120
+++++
>+<[[->>>>+<<<<]>>>>[-<<<<+>>+>>]<<<<>[->>+<<]<>>>[-<[->>+<<]>>[-<<+<+>>>]<]<[-]><<<-]
×/⍳X
!X
#!/bin/bash
echo $(($1 * `( [[ $1 -gt 1 ]] && ./$0 $(($1 - 1)) ) || echo 1`));
fac(0) -> 1;
fac(N) when N > 0 -> fac(N, 1).

fac(1, R) -> R;
fac(N, R) -> fac(N - 1, R * N).
sub factorial ($n) { [*] 1..$n }
sub postfix:<!> ($n) { [*] 1..$n }

# This function(?) call like below ... It looks like mathematical notation.
say 10!;
<?xml version="1.0"?>
<?xml-stylesheet href="factorial.xsl" type="text/xsl" ?>
<n>
  20
</n>
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"                     
                xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
                xmlns:msxsl="urn:schemas-microsoft-com:xslt" >
  <xsl:output method="text"/>
  <!-- 0! = 1 -->
  <xsl:template match="text()[. = 0]">
    1
  </xsl:template>
  <!-- n! = (n-1)! * n-->
  <xsl:template match="text()[. > 0]">
    <xsl:variable name="x">
      <xsl:apply-templates select="msxsl:node-set( . - 1 )/text()"/>
    </xsl:variable>
    <xsl:value-of select="$x * ."/>
  </xsl:template>
  <!-- Calculate n! -->
  <xsl:template match="/n">
    <xsl:apply-templates select="text()"/>
  </xsl:template>
</xsl:stylesheet>
fac n = if n == 0 
           then 1
           else n * fac (n-1)
fac = (\(n) ->
        (if ((==) n 0)
            then 1
            else ((*) n (fac ((-) n 1)))))
fac  0    =  1
fac (n+1) = (n+1) * fac n
fac 0 = 1
fac n = n * fac (n-1)
fac n = foldr (*) 1 [1..n]
fac n = foldl (*) 1 [1..n]
-- using foldr to simulate foldl

fac n = foldr (\x g n -> g (x*n)) id [1..n] 1
facs = scanl (*) 1 [1..]

fac n = facs !! n
fac = foldr (*) 1 . enumFromTo 1
fac n = result (for init next done)
        where init = (0,1)
              next   (i,m) = (i+1, m * (i+1))
              done   (i,_) = i==n
              result (_,m) = m

for i n d = until d n i
fac n = snd (until ((>n) . fst) (\(i,m) -> (i+1, i*m)) (1,1))
facAcc a 0 = a
facAcc a n = facAcc (n*a) (n-1)

fac = facAcc 1
facCps k 0 = k 1
facCps k n = facCps (k . (n *)) (n-1)

fac = facCps id
y f = f (y f)

fac = y (\f n -> if (n==0) then 1 else n * f (n-1))
s f g x = f x (g x)

k x y   = x

b f g x = f (g x)

c f g x = f x g

y f     = f (y f)

cond p f g x = if p x then f x else g x

fac  = y (b (cond ((==) 0) (k 1)) (b (s (*)) (c b pred)))
arb = ()    -- "undefined" is also a good RHS, as is "arb" :)

listenc n = replicate n arb
listprj f = length . f . listenc

listprod xs ys = [ i (x,y) | x<-xs, y<-ys ]
                 where i _ = arb

facl []         = listenc  1
facl n@(_:pred) = listprod n (facl pred)

fac = listprj facl
-- a dynamically-typed term language

data Term = Occ Var
          | Use Prim
          | Lit Integer
          | App Term Term
          | Abs Var  Term
          | Rec Var  Term

type Var  = String
type Prim = String


-- a domain of values, including functions

data Value = Num  Integer
           | Bool Bool
           | Fun (Value -> Value)

instance Show Value where
  show (Num  n) = show n
  show (Bool b) = show b
  show (Fun  _) = ""

prjFun (Fun f) = f
prjFun  _      = error "bad function value"

prjNum (Num n) = n
prjNum  _      = error "bad numeric value"

prjBool (Bool b) = b
prjBool  _       = error "bad boolean value"

binOp inj f = Fun (\i -> (Fun (\j -> inj (f (prjNum i) (prjNum j)))))


-- environments mapping variables to values

type Env = [(Var, Value)]

getval x env =  case lookup x env of
                  Just v  -> v
                  Nothing -> error ("no value for " ++ x)


-- an environment-based evaluation function

eval env (Occ x) = getval x env
eval env (Use c) = getval c prims
eval env (Lit k) = Num k
eval env (App m n) = prjFun (eval env m) (eval env n)
eval env (Abs x m) = Fun  (\v -> eval ((x,v) : env) m)
eval env (Rec x m) = f where f = eval ((x,f) : env) m


-- a (fixed) "environment" of language primitives

times = binOp Num  (*)

minus = binOp Num  (-)
equal = binOp Bool (==)
cond  = Fun (\b -> Fun (\x -> Fun (\y -> if (prjBool b) then x else y)))

prims = [ ("*", times), ("-", minus), ("==", equal), ("if", cond) ]


-- a term representing factorial and a "wrapper" for evaluation

facTerm = Rec "f" (Abs "n" 
              (App (App (App (Use "if")
                   (App (App (Use "==") (Occ "n")) (Lit 0))) (Lit 1))
                   (App (App (Use "*")  (Occ "n"))
                        (App (Occ "f")  
                             (App (App (Use "-") (Occ "n")) (Lit 1))))))

fac n = prjNum (eval [] (App facTerm (Lit n)))
-- static Peano constructors and numerals

data Zero
data Succ n

type One   = Succ Zero
type Two   = Succ One
type Three = Succ Two
type Four  = Succ Three


-- dynamic representatives for static Peanos

zero  = undefined :: Zero
one   = undefined :: One
two   = undefined :: Two
three = undefined :: Three
four  = undefined :: Four


-- addition, a la Prolog

class Add a b c | a b -> c where
  add :: a -> b -> c

instance              Add  Zero    b  b
instance Add a b c => Add (Succ a) b (Succ c)


-- multiplication, a la Prolog

class Mul a b c | a b -> c where
  mul :: a -> b -> c

instance                           Mul  Zero    b Zero
instance (Mul a b c, Add b c d) => Mul (Succ a) b d


-- factorial, a la Prolog

class Fac a b | a -> b where
  fac :: a -> b

instance                                Fac  Zero    One
instance (Fac n k, Mul (Succ n) k m) => Fac (Succ n) m

-- try, for "instance" (sorry):
-- 
--     :t fac four
-- the natural numbers, a la Peano

data Nat = Zero | Succ Nat


-- iteration and some applications

iter z s  Zero    = z
iter z s (Succ n) = s (iter z s n)

plus n = iter n     Succ
mult n = iter Zero (plus n)


-- primitive recursion

primrec z s  Zero    = z
primrec z s (Succ n) = s n (primrec z s n)


-- two versions of factorial

fac  = snd . iter (one, one) (\(a,b) -> (Succ a, mult a b))
fac' = primrec one (mult . Succ)


-- for convenience and testing (try e.g. "fac five")

int = iter 0 (1+)

instance Show Nat where
  show = show . int

(zero : one : two : three : four : five : _) = iterate Succ Zero
-- (curried, list) fold and an application

fold c n []     = n
fold c n (x:xs) = c x (fold c n xs)

prod = fold (*) 1


-- (curried, boolean-based, list) unfold and an application

unfold p f g x = 
  if p x 
     then [] 
     else f x : unfold p f g (g x)

downfrom = unfold (==0) id pred


-- hylomorphisms, as-is or "unfolded" (ouch! sorry ...)

refold  c n p f g   = fold c n . unfold p f g

refold' c n p f g x = 
  if p x 
     then n 
     else c (f x) (refold' c n p f g (g x))


-- several versions of factorial, all (extensionally) equivalent

fac   = prod . downfrom
fac'  = refold  (*) 1 (==0) id pred
fac'' = refold' (*) 1 (==0) id pred
-- (product-based, list) catamorphisms and an application

cata (n,c) []     = n
cata (n,c) (x:xs) = c (x, cata (n,c) xs)

mult = uncurry (*)
prod = cata (1, mult)


-- (co-product-based, list) anamorphisms and an application

ana f = either (const []) (cons . pair (id, ana f)) . f

cons = uncurry (:)

downfrom = ana uncount

uncount 0 = Left  ()
uncount n = Right (n, n-1)


-- two variations on list hylomorphisms

hylo  f  g    = cata g . ana f

hylo' f (n,c) = either (const n) (c . pair (id, hylo' f (c,n))) . f

pair (f,g) (x,y) = (f x, g y)


-- several versions of factorial, all (extensionally) equivalent

fac   = prod . downfrom
fac'  = hylo  uncount (1, mult)
fac'' = hylo' uncount (1, mult)
-- explicit type recursion based on functors

newtype Mu f = Mu (f (Mu f))  deriving Show

in      x  = Mu x
out (Mu x) = x


-- cata- and ana-morphisms, now for *arbitrary* (regular) base functors

cata phi = phi . fmap (cata phi) . out
ana  psi = in  . fmap (ana  psi) . psi


-- base functor and data type for natural numbers,
-- using a curried elimination operator

data N b = Zero | Succ b  deriving Show

instance Functor N where
  fmap f = nelim Zero (Succ . f)

nelim z s  Zero    = z
nelim z s (Succ n) = s n

type Nat = Mu N


-- conversion to internal numbers, conveniences and applications

int = cata (nelim 0 (1+))

instance Show Nat where
  show = show . int

zero = in   Zero
suck = in . Succ       -- pardon my "French" (Prelude conflict)

plus n = cata (nelim n     suck   )
mult n = cata (nelim zero (plus n))


-- base functor and data type for lists

data L a b = Nil | Cons a b  deriving Show

instance Functor (L a) where
  fmap f = lelim Nil (\a b -> Cons a (f b))

lelim n c  Nil       = n
lelim n c (Cons a b) = c a b

type List a = Mu (L a)


-- conversion to internal lists, conveniences and applications

list = cata (lelim [] (:))

instance Show a => Show (List a) where
  show = show . list

prod = cata (lelim (suck zero) mult)

upto = ana (nelim Nil (diag (Cons . suck)) . out)

diag f x = f x x

fac = prod . upto
-- explicit type recursion with functors and catamorphisms

newtype Mu f = In (f (Mu f))

unIn (In x) = x

cata phi = phi . fmap (cata phi) . unIn


-- base functor and data type for natural numbers,
-- using locally-defined "eliminators"

data N c = Z | S c

instance Functor N where
  fmap g  Z    = Z
  fmap g (S x) = S (g x)

type Nat = Mu N

zero   = In  Z
suck n = In (S n)

add m = cata phi where
  phi  Z    = m
  phi (S f) = suck f

mult m = cata phi where
  phi  Z    = zero
  phi (S f) = add m f


-- explicit products and their functorial action

data Prod e c = Pair c e

outl (Pair x y) = x
outr (Pair x y) = y

fork f g x = Pair (f x) (g x)

instance Functor (Prod e) where
  fmap g = fork (g . outl) outr


-- comonads, the categorical "opposite" of monads

class Functor n => Comonad n where
  extr :: n a -> a
  dupl :: n a -> n (n a)

instance Comonad (Prod e) where
  extr = outl
  dupl = fork id outr


-- generalized catamorphisms, zygomorphisms and paramorphisms

gcata :: (Functor f, Comonad n) =>
           (forall a. f (n a) -> n (f a))
             -> (f (n c) -> c) -> Mu f -> c

gcata dist phi = extr . cata (fmap phi . dist . fmap dupl)

zygo chi = gcata (fork (fmap outl) (chi . fmap outr))

para :: Functor f => (f (Prod (Mu f) c) -> c) -> Mu f -> c
para = zygo In


-- factorial, the *hard* way!

fac = para phi where
  phi  Z             = suck zero
  phi (S (Pair f n)) = mult f (suck n)


-- for convenience and testing

int = cata phi where
  phi  Z    = 0
  phi (S f) = 1 + f

instance Show (Mu N) where
  show = show . int
fac n = product [1..n]
char //# b=0+0{- |0*/; #>>>>,----------[>>>>,-------- #define a/*#--]>>>>++<<<<<<<<[>++++++[<------>-]<-<<< #Perl ><><><> <> <> <<]>>>>[[>>+<<-]>>[<<+>+>-]<-> #C++ --><><> <><><>< > < > < +<[>>>>+<<<-<[-]]>[-] #Haskell >>]>[-<<<<<[<<<<]>>>>[[>>+<<-]>>[<<+>+>-]>>] #Whitespace >>>>[-[>+<-]+>>>>]<<<<[<<<<]<<<<[<<<< #brainf*ck > < ]>>>>>[>>>[>>>>]>>>>[>>>>]<<<<[[>>>>*/ exp; ;//;#+<<<<-]<<<<]>>>>+<<<<<<<[<<<<][.POLYGLOT^5. #include <gmpxx.h>//]>>>>-[>>>[>>>>]>>>>[>>>>]<<<<[>> #define eval int main()//>+<<<-]>>>[<<<+>>+>-> #include <iostream>//<]<-[>>+<<[-]]<<[<<<<]>>>>[>[>>> #define print std::cout << // > <+<-]>[<<+>+>-]<<[>>> #define z std::cin>>//<< +<<<-]>>>[<<<+>>+>-]<->+++++ #define c/*++++[-<[-[>>>>+<<<<-]]>>>>[<<<<+>>>>-]<<*/ #define abs int $n //>< <]<[>>+<<<<[-]>>[<<+>>-]]>>]< #define uc mpz_class fact(int $n){/*<<<[<<<<]<<<[<< use bignum;sub#<<]>>>>-]>>>>]>>>[>[-]>>>]<<<<[>>+<<-] z{$_[0+0]=readline(*STDIN);}sub fact{my($n)=shift;#>> #[<<+>+>-]<->+<[>-<[-]]>[-<<-<<<<[>>+<<-]>>[<<+>+>+*/ uc;if($n==0){return 1;}return $n*fact($n-1); }//;# eval{abs;z($n);print fact($n);print("\n")/*2;};#-]<-> '+<[>-<[-]]>]<<[<<<<]<<<<-[>>+<<-]>>[<<+>+>-]+<[>-+++ -}-- <[-]]>[-<<++++++++++<<<<-[>>+<<-]>>[<<+>+>-++ fact 0 = 1 -- ><><><>< > <><>< ]+<[>-<[-]]>]<<[<<+ + fact n=n*fact(n-1){-<<]>>>>[[>>+<<-]>>[<<+>+++>+-} main=do{n<-readLn;print(fact n)}-- +>-]<->+<[>>>>+<<+ {-x<-<[-]]>[-]>>]>]>>>[>>>>]<<<<[>+++++++[<+++++++>-] <--.<<<<]+written+by+++A+Rex+++2009+.';#+++x-}--x*/;}