Algorithm 如何有效地确定多边形是凸多边形、非凸多边形还是复杂多边形?

Algorithm 如何有效地确定多边形是凸多边形、非凸多边形还是复杂多边形?,algorithm,geometry,polygon,computational-geometry,xlib,Algorithm,Geometry,Polygon,Computational Geometry,Xlib,从手册页中: 如果形状复杂,则路径可能自相交。请注意,路径中的连续重合点不被视为自相交 如果形状为凸,则对于多边形内的每对点,连接它们的线段不与路径相交。如果客户端知道,指定凸面可以提高性能。如果为非凸路径指定凸,则图形结果未定义 如果形状为非凸,则路径不自相交,但形状并非完全凸。如果客户知道,指定非凸而不是复杂可以提高性能。如果为自交路径指定非凸,则图形结果未定义 我在fillXFillPolygon中遇到性能问题,正如手册页所示,我要采取的第一步是指定多边形的正确形状。为了安全起见,我目

从手册页中:

  • 如果
    形状
    复杂,则路径可能自相交。请注意,路径中的连续重合点不被视为自相交

  • 如果
    形状
    ,则对于多边形内的每对点,连接它们的线段不与路径相交。如果客户端知道,指定凸面可以提高性能。如果为非凸路径指定,则图形结果未定义

  • 如果
    形状
    非凸,则路径不自相交,但形状并非完全凸。如果客户知道,指定非凸而不是复杂可以提高性能。如果为自交路径指定非凸,则图形结果未定义

我在fill
XFillPolygon
中遇到性能问题,正如手册页所示,我要采取的第一步是指定多边形的正确形状。为了安全起见,我目前正在使用Complex


有没有有效的算法来确定多边形(由一系列坐标定义)是凸的、非凸的还是复杂的?

这里有一个测试来检查多边形是否

考虑沿多边形的每一组三个点。如果每个角度小于等于180度,则有一个凸多边形。当你计算出每个角度时,也要保持一个180度的总角度。对于凸多边形,总计为360

此测试以O(n)时间运行


另外,请注意,在大多数情况下,这种计算只需执行一次即可节省—大多数情况下,您需要处理一组多边形,这些多边形不会一直变化。

您可以使事情比礼品包装算法简单得多。。。这是一个很好的答案,当你有一组点,没有任何特定的边界,需要找到凸包

相比之下,考虑多边形不是自相交的情况,它由一组列表中的点组成,其中连续点形成边界。在这种情况下,确定多边形是否为凸多边形要容易得多(而且您也不必计算任何角度):

对于多边形的每一对连续边(每三组点),计算由指向点的边按递增顺序定义的向量的叉积的z分量。取这些向量的叉积:

 given p[k], p[k+1], p[k+2] each with coordinates x, y:
 dx1 = x[k+1]-x[k]
 dy1 = y[k+1]-y[k]
 dx2 = x[k+2]-x[k+1]
 dy2 = y[k+2]-y[k+1]
 zcrossproduct = dx1*dy2 - dy1*dx2
如果叉积的z分量全部为正或全部为负,则多边形为凸多边形。否则多边形是非凸的

如果有N个点,确保计算N个叉积,例如,确保使用三元组(p[N-2],p[N-1],p[0])和(p[N-1],p[0],p[1])



如果多边形是自相交的,则即使其定向角都在同一方向上,在这种情况下,上述方法不会产生正确的结果。

要测试多边形是否为凸多边形,多边形的每个点都应与每条线平齐或在每条线后平齐

下面是一个示例图片:


以下Java函数/方法是中所述算法的实现

public boolean isConvex()
{
如果(_顶点.size()<4)
返回true;
布尔符号=假;
int n=_顶点.size();
对于(int i=0;i0;
else if(符号!=(zcrossproduct>0))
返回false;
}
返回true;
}

只要顶点按顺序排列(顺时针或逆时针),并且没有自交边(即,它仅适用于)该算法就可以工作

将Uri的代码改编成matlab。希望这能有所帮助

请注意,Uri的算法只适用于简单多边形!所以,一定要先测试多边形是否简单

% M [ x1 x2 x3 ...
%     y1 y2 y3 ...]
% test if a polygon is convex

function ret = isConvex(M)
    N = size(M,2);
    if (N<4)
        ret = 1;
        return;
    end

    x0 = M(1, 1:end);
    x1 = [x0(2:end), x0(1)];
    x2 = [x0(3:end), x0(1:2)];
    y0 = M(2, 1:end);
    y1 = [y0(2:end), y0(1)];
    y2 = [y0(3:end), y0(1:2)];
    dx1 = x2 - x1;
    dy1 = y2 - y1;
    dx2 = x0 - x1;
    dy2 = y0 - y1;
    zcrossproduct = dx1 .* dy2 - dy1 .* dx2;

    % equality allows two consecutive edges to be parallel
    t1 = sum(zcrossproduct >= 0);  
    t2 = sum(zcrossproduct <= 0);  
    ret = t1 == N || t2 == N;

end
%M[x1 x2 x3。。。
%y1 y2 y3…]
%测试多边形是否为凸多边形
函数ret=isConvex(M)
N=尺寸(M,2);
如果(N=0);

t2=sum(zcrossproduct此方法适用于简单多边形(无自交边),假设顶点按顺序排列(顺时针或逆时针)

对于顶点数组:

vertices = [(0,0),(1,0),(1,1),(0,1)]
// concave
int []x = {0,100,200,200,100,0,0};
int []y = {50,0,50,200,50,200,50};

// convex
int []x = {0,100,200,100,0,0};
int []y = {50,0,50,200,200,50};
下面的
python
实现检查所有交叉乘积的
z
组件是否具有相同的符号

def zCrossProduct(a,b,c):
   return (a[0]-b[0])*(b[1]-c[1])-(a[1]-b[1])*(b[0]-c[0])

def isConvex(vertices):
    if len(vertices)<4:
        return True
    signs= [zCrossProduct(a,b,c)>0 for a,b,c in zip(vertices[2:],vertices[1:],vertices)]
    return all(signs) or not any(signs)
def ZCROSS产品(a、b、c): 返回(a[0]-b[0])*(b[1]-c[1])-(a[1]-b[1])*(b[0]-c[0]) def isConvex(顶点): 如果zip中a、b、c的len(顶点)为0(顶点[2:],顶点[1:],顶点)] 返回所有(标志)或不返回任何(标志)
当你搜索“确定凸多边形”时,这个问题现在是Bing或Google的第一项。然而,没有一个答案是足够好的

这个(现已删除)的工作原理是检查一组无序的点是否可以变成凸多边形,但这不是OP要求的。他要求提供一种方法来检查给定的多边形是否是凸多边形。(计算机科学中的“多边形”通常被定义为[如中所示]作为二维点的有序数组,连续点与一个边以及最后一个点连接到第一个点。)此外,这种情况下的礼品包装算法对于
n
点的时间复杂度为
O(n^2)
,其中
TWO_PI = 2 * pi

def is_convex_polygon(polygon):
    """Return True if the polynomial defined by the sequence of 2D
    points is 'strictly convex': points are valid, side lengths non-
    zero, interior angles are strictly between zero and a straight
    angle, and the polygon does not intersect itself.

    NOTES:  1.  Algorithm: the signed changes of the direction angles
                from one side to the next side must be all positive or
                all negative, and their sum must equal plus-or-minus
                one full turn (2 pi radians). Also check for too few,
                invalid, or repeated points.
            2.  No check is explicitly done for zero internal angles
                (180 degree direction-change angle) as this is covered
                in other ways, including the `n < 3` check.
    """
    try:  # needed for any bad points or direction changes
        # Check for too few points
        if len(polygon) < 3:
            return False
        # Get starting information
        old_x, old_y = polygon[-2]
        new_x, new_y = polygon[-1]
        new_direction = atan2(new_y - old_y, new_x - old_x)
        angle_sum = 0.0
        # Check each point (the side ending there, its angle) and accum. angles
        for ndx, newpoint in enumerate(polygon):
            # Update point coordinates and side directions, check side length
            old_x, old_y, old_direction = new_x, new_y, new_direction
            new_x, new_y = newpoint
            new_direction = atan2(new_y - old_y, new_x - old_x)
            if old_x == new_x and old_y == new_y:
                return False  # repeated consecutive points
            # Calculate & check the normalized direction-change angle
            angle = new_direction - old_direction
            if angle <= -pi:
                angle += TWO_PI  # make it in half-open interval (-Pi, Pi]
            elif angle > pi:
                angle -= TWO_PI
            if ndx == 0:  # if first time through loop, initialize orientation
                if angle == 0.0:
                    return False
                orientation = 1.0 if angle > 0.0 else -1.0
            else:  # if other time through loop, check orientation is stable
                if orientation * angle <= 0.0:  # not both pos. or both neg.
                    return False
            # Accumulate the direction-change angle
            angle_sum += angle
        # Check that the total number of full turns is plus-or-minus 1
        return abs(round(angle_sum / TWO_PI)) == 1
    except (ArithmeticError, TypeError, ValueError):
        return False  # any exception means not a proper convex polygon
if orientation * angle < 0.0:  # not both pos. or both neg.
# A square    
assert is_convex_polygon( ((0,0), (1,0), (1,1), (0,1)) )

# This LOOKS like a square, but it has an extra point on one of the edges.
assert is_convex_polygon( ((0,0), (0.5,0), (1,0), (1,1), (0,1)) )
// concave
int []x = {0,100,200,200,100,0,0};
int []y = {50,0,50,200,50,200,50};

// convex
int []x = {0,100,200,100,0,0};
int []y = {50,0,50,200,200,50};
private boolean isConvex1(int[] x, int[] y, int base, int n) // Rory Daulton
{
  final double TWO_PI = 2 * Math.PI;

  // points is 'strictly convex': points are valid, side lengths non-zero, interior angles are strictly between zero and a straight
  // angle, and the polygon does not intersect itself.
  // NOTES:  1.  Algorithm: the signed changes of the direction angles from one side to the next side must be all positive or
  // all negative, and their sum must equal plus-or-minus one full turn (2 pi radians). Also check for too few,
  // invalid, or repeated points.
  //      2.  No check is explicitly done for zero internal angles(180 degree direction-change angle) as this is covered
  // in other ways, including the `n < 3` check.

  // needed for any bad points or direction changes
  // Check for too few points
  if (n <= 3) return true;
  if (x[base] == x[n-1] && y[base] == y[n-1]) // if its a closed polygon, ignore last vertex
     n--;
  // Get starting information
  int old_x = x[n-2], old_y = y[n-2];
  int new_x = x[n-1], new_y = y[n-1];
  double new_direction = Math.atan2(new_y - old_y, new_x - old_x), old_direction;
  double angle_sum = 0.0, orientation=0;
  // Check each point (the side ending there, its angle) and accum. angles for ndx, newpoint in enumerate(polygon):
  for (int i = 0; i < n; i++)
  {
     // Update point coordinates and side directions, check side length
     old_x = new_x; old_y = new_y; old_direction = new_direction;
     int p = base++;
     new_x = x[p]; new_y = y[p];
     new_direction = Math.atan2(new_y - old_y, new_x - old_x);
     if (old_x == new_x && old_y == new_y)
        return false; // repeated consecutive points
     // Calculate & check the normalized direction-change angle
     double angle = new_direction - old_direction;
     if (angle <= -Math.PI)
        angle += TWO_PI;  // make it in half-open interval (-Pi, Pi]
     else if (angle > Math.PI)
        angle -= TWO_PI;
     if (i == 0)  // if first time through loop, initialize orientation
     {
        if (angle == 0.0) return false;
        orientation = angle > 0 ? 1 : -1;
     }
     else  // if other time through loop, check orientation is stable
     if (orientation * angle <= 0)  // not both pos. or both neg.
        return false;
     // Accumulate the direction-change angle
     angle_sum += angle;
     // Check that the total number of full turns is plus-or-minus 1
  }
  return Math.abs(Math.round(angle_sum / TWO_PI)) == 1;
}
private boolean isConvex2(int[] x, int[] y, int base, int n)
{
  if (n < 4)
     return true;
  boolean sign = false;
  if (x[base] == x[n-1] && y[base] == y[n-1]) // if its a closed polygon, ignore last vertex
     n--;
  for(int p=0; p < n; p++)
  {
     int i = base++;
     int i1 = i+1; if (i1 >= n) i1 = base + i1-n;
     int i2 = i+2; if (i2 >= n) i2 = base + i2-n;
     int dx1 = x[i1] - x[i];
     int dy1 = y[i1] - y[i];
     int dx2 = x[i2] - x[i1];
     int dy2 = y[i2] - y[i1];
     int crossproduct = dx1*dy2 - dy1*dx2;
     if (i == base)
        sign = crossproduct > 0;
     else
     if (sign != (crossproduct > 0))
        return false;
  }
  return true;
}