如何使用内核创建可引导的CD映像?

如何使用内核创建可引导的CD映像?,c,assembly,operating-system,kernel,nasm,C,Assembly,Operating System,Kernel,Nasm,我有一个内核,要引导,我使用命令qemu-system-i386-kernel-kernel.bin。是否有任何方法可以创建可引导磁盘映像以使用qemu-system-i386-cdrom CD.iso引导 我在linux中使用以下命令编译的代码: nasm -f elf32 kernel.asm -o kernelasm.o gcc -m32 -c kernel.c -o kernelc.o ld -m elf_i386 -T link.ld -o kernel.bin kernelasm.o

我有一个内核,要引导,我使用命令
qemu-system-i386-kernel-kernel.bin
。是否有任何方法可以创建可引导磁盘映像以使用
qemu-system-i386-cdrom CD.iso引导

我在linux中使用以下命令编译的代码:

nasm -f elf32 kernel.asm -o kernelasm.o
gcc -m32 -c kernel.c -o kernelc.o
ld -m elf_i386 -T link.ld -o kernel.bin kernelasm.o kernelc.o
然后使用
qemu-system-i386-kernel kernel.bin引导

代码: kernel.asm:

[BITS 32]
SECTION .text
    align 4
    dd 0x1BADB002
    dd 0x00
    dd - (0x1BADB002 + 0x00)

global start
global keyboard_handler
global read_port
global write_port
global load_idt

extern kmain
extern keyboard_handler_main

read_port:
    mov edx, [esp + 4]
    in al, dx
    ret

write_port:
    mov   edx, [esp + 4]    
    mov   al, [esp + 4 + 4]  
    out   dx, al  
    ret

load_idt:
    mov edx, [esp + 4]
    lidt [edx]
    sti
    ret

keyboard_handler:                 
    call    keyboard_handler_main
    iretd

start:
    cli
    mov esp, stack_space
    call kmain
    hlt

section .bss
resb 8192
stack_space:
kernel.c:

#include "keyboard_map.h"

#define LINES 25
#define COLUMNS_IN_LINE 80
#define BYTES_FOR_EACH_ELEMENT 2
#define SCREENSIZE BYTES_FOR_EACH_ELEMENT * COLUMNS_IN_LINE * LINES

#define KEYBOARD_DATA_PORT 0x60
#define KEYBOARD_STATUS_PORT 0x64
#define IDT_SIZE 256
#define INTERRUPT_GATE 0x8e
#define KERNEL_CODE_SEGMENT_OFFSET 0x08

#define ENTER_KEY_CODE 0x1C

extern unsigned char keyboard_map[128];
extern void keyboard_handler(void);
extern char read_port(unsigned short port);
extern void write_port(unsigned short port, unsigned char data);
extern void load_idt(unsigned long *idt_ptr);

unsigned int current_loc = 0;
char *vidptr = (char*)0xb8000;

struct IDT_entry {
    unsigned short int offset_lowerbits;
    unsigned short int selector;
    unsigned char zero;
    unsigned char type_attr;
    unsigned short int offset_higherbits;
};

struct IDT_entry IDT[IDT_SIZE];


void idt_init(void)
{
    unsigned long keyboard_address;
    unsigned long idt_address;
    unsigned long idt_ptr[2];

    keyboard_address = (unsigned long)keyboard_handler;
    IDT[0x21].offset_lowerbits = keyboard_address & 0xffff;
    IDT[0x21].selector = KERNEL_CODE_SEGMENT_OFFSET;
    IDT[0x21].zero = 0;
    IDT[0x21].type_attr = INTERRUPT_GATE;
    IDT[0x21].offset_higherbits = (keyboard_address & 0xffff0000) >> 16;

    write_port(0x20 , 0x11);
    write_port(0xA0 , 0x11);

    write_port(0x21 , 0x20);
    write_port(0xA1 , 0x28);

    write_port(0x21 , 0x00);
    write_port(0xA1 , 0x00);

    write_port(0x21 , 0x01);
    write_port(0xA1 , 0x01);

    write_port(0x21 , 0xff);
    write_port(0xA1 , 0xff);

    idt_address = (unsigned long)IDT ;
    idt_ptr[0] = (sizeof (struct IDT_entry) * IDT_SIZE) + ((idt_address & 0xffff) << 16);
    idt_ptr[1] = idt_address >> 16 ;

    load_idt(idt_ptr);
}

void kb_init(void)
{
    write_port(0x21 , 0xFD);
}

void kprint(const char *str)
{
    unsigned int i = 0;
    while (str[i] != '\0') {
        vidptr[current_loc++] = str[i++];
        vidptr[current_loc++] = 0x07;
    }
}

void kprint_newline(void)
{
    unsigned int line_size = BYTES_FOR_EACH_ELEMENT * COLUMNS_IN_LINE;
    current_loc = current_loc + (line_size - current_loc % (line_size));
}

void clear_screen(void)
{
    unsigned int i = 0;
    while (i < SCREENSIZE) {
        vidptr[i++] = ' ';
        vidptr[i++] = 0x07;
    }
}

void keyboard_handler_main(void)
{
    unsigned char status;
    char keycode;

    write_port(0x20, 0x20);

    status = read_port(KEYBOARD_STATUS_PORT);
    if (status & 0x01) {
        keycode = read_port(KEYBOARD_DATA_PORT);
        if(keycode < 0)
            return;

        if(keycode == ENTER_KEY_CODE) {
            kprint_newline();
            return;
        }

        vidptr[current_loc++] = keyboard_map[(unsigned char) keycode];
        vidptr[current_loc++] = 0x07;
    }
}

void kmain(void)
{
    const char *str = "my first kernel with keyboard support";
    clear_screen();
    kprint(str);
    kprint_newline();
    kprint_newline();

    idt_init();
    kb_init();

    while(1);
}

首先,我向您介绍引导过程的基本原理。实际上,当您运行命令
qemu-system-i386-kernel kernel.bin
qemu将内核二进制文件加载到内存中的0x7c000位置,从该位置继续引导。 如果你想从ISO启动,那么你必须告诉BIOS在我的ISO中有一个可启动映像(标记启动标志),并给它正确的指令来启动你的内核。

怎么做?
您必须设置一个引导加载程序,它可以由BIOS在0x7c000加载,稍后它会将内核映像加载到内存中并跳转到内核入口点。
因此,请将ISO标记为活动(引导标志)并添加引导加载程序代码

我可以看到您已经有了安装多引导入口点代码

align 4
dd 0x1BADB002
dd 0x00
dd - (0x1BADB002 + 0x00)
您可以从这里阅读有关设置grub启动链的更多信息 您还可以使用syslinux引导加载程序

syslinux 将isolinux.bin、syslinux.cfg和mboot.c32复制到内核二进制映像的构建路径。 配置syslinux.cfg并执行以下命令

mkisofs.exe -o %OUTPUT_DIR%\%BUILD_NAME%.iso -b isolinux/isolinux.bin -c isolinux/boot.cat -no-emul-boot -boot-load-size 4 -boot-info-table %ISO_DIR%
环顾“El Torito”标准可能的副本
align 4
dd 0x1BADB002
dd 0x00
dd - (0x1BADB002 + 0x00)
mkisofs.exe -o %OUTPUT_DIR%\%BUILD_NAME%.iso -b isolinux/isolinux.bin -c isolinux/boot.cat -no-emul-boot -boot-load-size 4 -boot-info-table %ISO_DIR%