Python Rubik cubefinder.py错误

Python Rubik cubefinder.py错误,python,opencv,computer-vision,rubiks-cube,Python,Opencv,Computer Vision,Rubiks Cube,我想使用我找到的一些代码从这个站点检测Rubiks多维数据集: 在安装了所有OpenCV库之后,当我将多维数据集显示给相机时,出现以下错误: Python 2.7.2 (default, Jun 12 2011, 15:08:59) [MSC v.1500 32 bit (Intel)] on win32 Type "copyright", "credits" or "license()" for more information. >>> ==================

我想使用我找到的一些代码从这个站点检测Rubiks多维数据集:

在安装了所有OpenCV库之后,当我将多维数据集显示给相机时,出现以下错误:

Python 2.7.2 (default, Jun 12 2011, 15:08:59) [MSC v.1500 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>> 

Traceback (most recent call last):
  File "C:\Users\user\Desktop\cubefinder.py", line 574, in <module>
    cv.Line(sg,pt[0],pt[1],(0,255,0),2)
TypeError: CvPoint argument 'pt1' expects two integers
win32上的Python 2.7.2(默认值,2011年6月12日,15:08:59)[MSC v.1500 32位(英特尔)] 有关详细信息,请键入“copyright”、“credits”或“license()”。 >>>=================================================重新启动================================ >>> 回溯(最近一次呼叫最后一次): 文件“C:\Users\user\Desktop\cubefinder.py”,第574行,在 等速线(sg,pt[0],pt[1],(0255,0),2) TypeError:CvPoint参数“pt1”需要两个整数
编辑:为这么多的代码感到抱歉,我刚刚看到这是愚蠢的和不必要的。

函数
cv.Line
希望将点指定为整数对,但您正在以浮点对的形式传递。在将点传递到
cv.Line
之前,需要将点四舍五入到最接近的整数点。可能有这样的辅助函数:

def grid(p):
    """Return the nearest point with integer coordinates to p."""
    return int(round(p[0])), int(round(p[1]))
那么你的

cv.Line(sg,pt[0],pt[1],(0,255,0),2)
变成

cv.Line(sg,grid(pt[0]),grid(pt[1]),(0,255,0),2)

(另一种可能是首先避免使用浮点坐标。但这取决于应用程序是否需要额外的精度。)

以下是使其在OpenCV 2.3中工作的代码。我无法理解为什么他们在函数调用cv.Line()中没有类型检查来将浮点转换为int。不管怎样,给你:

#!/usr/bin/python
import cv2.cv as cv
import sys
from random import uniform
from time import sleep
from math import sin,cos,pi,atan2,sqrt
from numpy import matrix
from time import time
from random import randrange

capture = cv.CreateCameraCapture( 0 )
cv.NamedWindow( "Fig", 1 )
frame = cv.QueryFrame( capture )
S1,S2=cv.GetSize(frame)
den=2
sg= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg2= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg3= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg4= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg5= cv.CreateImage((S1/den,S2/den), 8, 3 )
sgc= cv.CreateImage((S1/den,S2/den), 8, 3 )
hsv= cv.CreateImage((S1/den,S2/den), 8, 3 )
dst= cv.CreateImage((S1/den,S2/den), 8, 1 )
dst2= cv.CreateImage((S1/den,S2/den), 8, 1 )
d= cv.CreateImage((S1/den,S2/den), cv.IPL_DEPTH_16S, 1 )
d2=cv.CreateImage((S1/den,S2/den), 8, 1 )
d3=cv.CreateImage((S1/den,S2/den), 8, 1 )
b= cv.CreateImage((S1/den,S2/den), 8, 1 )
b4= cv.CreateImage((S1/den,S2/den), 8, 1 )
both= cv.CreateImage((S1/den,S2/den), 8, 1 )
harr= cv.CreateImage((S1/den,S2/den), 32, 1 )
W,H=S1/den,S2/den
lastdetected= 0
THR=100
dects=50 #ideal number of number of lines detections

hue= cv.CreateImage((S1/den,S2/den), 8, 1 )
sat= cv.CreateImage((S1/den,S2/den), 8, 1 )
val= cv.CreateImage((S1/den,S2/den), 8, 1 )

#stores the coordinates that make up the face. in order: p,p1,p3,p2 (i.e.) counterclockwise winding
prevface=[(0,0),(5,0),(0,5)]
dodetection=True

onlyBlackCubes=False

def grid(p):
    """Return the nearest point with integer coordinates to p."""
    return int(round(p[0])), int(round(p[1]))


def intersect_seg(x1,x2,x3,x4,y1,y2,y3,y4):
    den= (y4-y3)*(x2-x1)-(x4-x3)*(y2-y1)
    if abs(den)<0.1: return (False, (0,0),(0,0))
    ua=(x4-x3)*(y1-y3)-(y4-y3)*(x1-x3)
    ub=(x2-x1)*(y1-y3)-(y2-y1)*(x1-x3)    
    ua=ua/den
    ub=ub/den
    x=x1+ua*(x2-x1)
    y=y1+ua*(y2-y1)
    return (True,(ua,ub),(x,y))

def ptdst(p1,p2):
    return sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1]))

def ptdstw(p1,p2):
    #return sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1]))

    #test if hue is reliable measurement
    if p1[1]<100 or p2[1]<100:
        #hue measurement will be unreliable. Probably white stickers are present
        #leave this until end
        return 300.0+abs(p1[0]-p2[0])
    else:
        return abs(p1[0]-p2[0])


def ptdst3(p1,p2):
    dist=sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1])+(p1[2]-p2[2])*(p1[2]-p2[2]))
    if (p1[0]>245 and p1[1]>245 and p1[2]>245):
        #the sticker could potentially be washed out. Lets leave it to the end
        dist=dist+300.0
    return dist

def compfaces(f1,f2):
    totd=0
    for p1 in f1:
        mind=10000
        for p2 in f2:
            d=ptdst(p1,p2)
            if d<mind:
                mind=d
        totd += mind
    return totd/4

def avg(p1,p2):
    return (0.5*p1[0]+0.5*p2[0], 0.5*p2[1]+0.5*p2[1])

def areclose(t1,t2,t):
    #is t1 close to t2 within t?
    return abs(t1[0]-t2[0])<t and abs(t1[1]-t2[1])<t

def winded(p1,p2,p3,p4):
    #return the pts in correct order based on quadrants
    avg=(0.25*(p1[0]+p2[0]+p3[0]+p4[0]),0.25*(p1[1]+p2[1]+p3[1]+p4[1]))
    ps=[(atan2(p[1]-avg[1], p[0]-avg[0]), p) for p in [p1,p2,p3,p4]]
    ps.sort(reverse=True)
    return [p[1] for p in ps]

#return tuple of neighbors given face and sticker indeces
def neighbors(f,s):
    if f==0 and s==0: return ((1,2),(4,0))
    if f==0 and s==1: return ((4,3),)
    if f==0 and s==2: return ((4,6),(3,0))
    if f==0 and s==3: return ((1,5),)
    if f==0 and s==5: return ((3,3),)
    if f==0 and s==6: return ((1,8),(5,2))
    if f==0 and s==7: return ((5,5),)
    if f==0 and s==8: return ((3,6),(5,8))

    if f==1 and s==0: return ((2,2),(4,2))
    if f==1 and s==1: return ((4,1),)
    if f==1 and s==2: return ((4,0),(0,0))
    if f==1 and s==3: return ((2,5),)
    if f==1 and s==5: return ((0,3),)
    if f==1 and s==6: return ((2,8),(5,0))
    if f==1 and s==7: return ((5,1),)
    if f==1 and s==8: return ((0,6),(5,2))

    if f==2 and s==0: return ((4,8),(3,2))
    if f==2 and s==1: return ((4,5),)
    if f==2 and s==2: return ((4,2),(1,0))
    if f==2 and s==3: return ((3,5),)
    if f==2 and s==5: return ((1,3),)
    if f==2 and s==6: return ((3,8),(5,6))
    if f==2 and s==7: return ((5,3),)
    if f==2 and s==8: return ((1,6),(5,0))

    if f==3 and s==0: return ((4,6),(0,2))
    if f==3 and s==1: return ((4,7),)
    if f==3 and s==2: return ((4,8),(2,0))
    if f==3 and s==3: return ((0,5),)
    if f==3 and s==5: return ((2,3),)
    if f==3 and s==6: return ((0,8),(5,8))
    if f==3 and s==7: return ((5,7),)
    if f==3 and s==8: return ((2,6),(5,6))

    if f==4 and s==0: return ((1,2),(0,0))
    if f==4 and s==1: return ((1,1),)
    if f==4 and s==2: return ((1,0),(2,2))
    if f==4 and s==3: return ((0,1),)
    if f==4 and s==5: return ((2,1),)
    if f==4 and s==6: return ((0,2),(3,0))
    if f==4 and s==7: return ((3,1),)
    if f==4 and s==8: return ((3,2),(2,0))

    if f==5 and s==0: return ((1,6),(2,8))
    if f==5 and s==1: return ((1,7),)
    if f==5 and s==2: return ((1,8),(0,6))
    if f==5 and s==3: return ((2,7),)
    if f==5 and s==5: return ((0,7),)
    if f==5 and s==6: return ((2,6),(3,8))
    if f==5 and s==7: return ((3,7),)
    if f==5 and s==8: return ((3,6),(0,8))

def processColors(useRGB=True):
    global assigned,didassignments

    #assign all colors
    bestj=0
    besti=0
    bestcon=0
    matchesto=0
    bestd=10001
    taken=[0 for i in range(6)]
    done=0
    opposite={0:2, 1:3, 2:0, 3:1, 4:5, 5:4} #dict of opposite faces
    #possibilities for each face
    poss={}
    for j,f in enumerate(hsvs):
        for i,s in enumerate(f):
            poss[j,i]=range(6)

    #we are looping different arrays based on the useRGB flag
    toloop=hsvs
    if useRGB: toloop=colors

    while done<8*6:
        bestd=10000
        forced=False
        for j,f in enumerate(toloop):
            for i,s in enumerate(f):
                if i!=4 and assigned[j][i]==-1 and (not forced):
                    #this is a non-center sticker.
                    #find the closest center
                    considered=0
                    for k in poss[j,i]:
                        #all colors for this center were already assigned
                        if taken[k]<8:

                            #use Euclidean in RGB space or more elaborate
                            #distance metric for Hue Saturation
                            if useRGB:
                                dist=ptdst3(s, toloop[k][4])
                            else:
                                dist=ptdstw(s, toloop[k][4])

                            considered+=1
                            if dist<bestd:
                                bestd=dist
                                bestj=j
                                besti=i
                                matchesto=k
                    #IDEA: ADD PENALTY IF 2ND CLOSEST MATCH IS CLOSE TO FIRST
                    #i.e. we are uncertain about it

                    if besti==i and bestj==j: bestcon=considered
                    if considered==1:
                        #this sticker is forced! Terminate search 
                        #for better matches
                        forced=True
                        print 'sticker',(i,j),'had color forced!'


        #assign it
        done=done+1
        #print matchesto,bestd
        assigned[bestj][besti]=matchesto
        print bestcon

        op= opposite[matchesto] #get the opposite side
        #remove this possibility from neighboring stickers
        #since we cant have red-red edges for example
        #also corners have 2 neighbors. Also remove possibilities
        #of edge/corners made up of opposite sides
        ns=neighbors(bestj,besti)
        for neighbor in ns:
            p=poss[neighbor]
            if matchesto in p: p.remove(matchesto)
            if op in p: p.remove(op)

        taken[matchesto]+=1

    didassignments=True

succ=0 #number of frames in a row that we were successful in finding the outline
tracking=0
win_size=5
flags=0
detected=0

grey = cv.CreateImage ((W,H), 8, 1)
prev_grey = cv.CreateImage ((W,H), 8, 1)
pyramid = cv.CreateImage ((W,H), 8, 1)
prev_pyramid = cv.CreateImage ((W,H), 8, 1)

ff= cv.InitFont(cv.CV_FONT_HERSHEY_PLAIN, 1,1, shear=0, thickness=1, lineType=8)

counter=0 #global iteration counter
undetectednum=100
stage=1 #1: learning colors
extract=False
selected=0
colors=[[] for i in range(6)]
hsvs=[[] for i in range(6)]
assigned=[[-1 for i in range(9)] for j in range(6)]
for i in range(6):
    assigned[i][4]=i

didassignments=False
#orange green red blue yellow white. Used only for visualization purposes
mycols=[(0,127,255), (20,240,20), (0,0,255), (200,0,0), (0,255,255), (255,255,255)]

while True:
    frame = cv.QueryFrame( capture )
    if not frame:
        cv.WaitKey(0)
        break

    cv.Resize( frame, sg)

    #cv.EqualizeHist(val, val)
    #cv.Merge(hue,sat,val,None,sg2)
    #cv.CvtColor(sg2,sg,cv.CV_HSV2RGB)
    cv.Copy(sg, sgc)

    cv.CvtColor (sg, grey, cv.CV_RGB2GRAY)

    #cv.EqualizeHist(grey,grey)

    #tracking mode
    if tracking>0:

        detected=2
        #compute optical flow
        features, status, track_error = cv.CalcOpticalFlowPyrLK (
            prev_grey, grey, prev_pyramid, pyramid,
            features,
            (win_size, win_size), 3,
            (cv.CV_TERMCRIT_ITER|cv.CV_TERMCRIT_EPS, 20, 0.03),
            flags)
        # set back the points we keep
        features = [ p for (st,p) in zip(status, features) if st]
        if len(features)<4: 
            tracking= 0 #we lost it, restart search
        else:
            #make sure that in addition the distances are consistent
            ds1=ptdst(features[0], features[1])
            ds2=ptdst(features[2], features[3])
            if max(ds1,ds2)/min(ds1,ds2)>1.4: tracking=0

            ds3=ptdst(features[0], features[2])
            ds4=ptdst(features[1], features[3])
            if max(ds3,ds4)/min(ds3,ds4)>1.4: tracking=0

            if ds1< 10 or ds2<10 or ds3<10 or ds4<10: tracking=0
            if tracking==0: detected=0

    #detection mode
    if tracking==0:
        detected=0
        cv.Smooth(grey,dst2,cv.CV_GAUSSIAN, 3)
        cv.Laplace(dst2,d)
        cv.CmpS(d,8,d2,cv.CV_CMP_GT)

        if onlyBlackCubes:
            #can also detect on black lines for improved robustness
            cv.CmpS(grey,100,b,cv.CV_CMP_LT)
            cv.And(b,d2,d2)

        #these weights should be adaptive. We should always detect 100 lines
        if lastdetected>dects: THR=THR+1
        if lastdetected<dects: THR=max(2,THR-1)
        li= cv.HoughLines2(d2, cv.CreateMemStorage(), cv.CV_HOUGH_PROBABILISTIC, 1, 3.1415926/45, THR, 10, 5)

        #store angles for later
        angs=[]
        for (p1, p2) in li: 
            #cv.Line(sg,p1,p2,(0,255,0))
            a = atan2(p2[1]-p1[1],p2[0]-p1[0])
            if a<0:a+=pi
            angs.append(a)

        #lets look for lines that share a common end point
        t=10
        totry=[]
        for i in range(len(li)):
            p1,p2=li[i]
            for j in range(i+1,len(li)):
                q1,q2=li[j]

                #test lengths are approximately consistent
                dd1= sqrt((p2[0]-p1[0])*(p2[0]-p1[0])+(p2[1]-p1[1])*(p2[1]-p1[1]))
                dd2= sqrt((q2[0]-q1[0])*(q2[0]-q1[0])+(q2[1]-q1[1])*(q2[1]-q1[1]))
                if max(dd1,dd2)/min(dd1,dd2)>1.3: continue

                matched=0
                if areclose(p1,q2,t): 
                    IT=(avg(p1,q2), p2, q1,dd1)
                    matched=matched+1
                if areclose(p2,q2,t): 
                    IT=(avg(p2,q2), p1, q1,dd1)
                    matched=matched+1
                if areclose(p1,q1,t): 
                    IT=(avg(p1,q1), p2, q2,dd1)
                    matched=matched+1
                if areclose(p2,q1,t): 
                    IT=(avg(p2,q1), q2, p1,dd1)
                    matched=matched+1

                if matched==0:
                    #not touching at corner... try also inner grid segments hypothesis?
                    p1=(float(p1[0]),float(p1[1]))
                    p2=(float(p2[0]),float(p2[1]))
                    q1=(float(q1[0]),float(q1[1]))
                    q2=(float(q2[0]),float(q2[1]))
                    success,(ua,ub),(x,y)=\
                        intersect_seg(p1[0],p2[0],q1[0],q2[0],p1[1],p2[1],q1[1],q2[1])
                    if success and ua>0 and ua<1 and ub>0 and ub<1:
                        #if they intersect
                        #cv.Line(sg, p1, p2, (255,255,255))
                        ok1=0
                        ok2=0
                        if abs(ua-1.0/3)<0.05:ok1=1
                        if abs(ua-2.0/3)<0.05:ok1=2
                        if abs(ub-1.0/3)<0.05:ok2=1
                        if abs(ub-2.0/3)<0.05:ok2=2
                        if ok1>0 and ok2>0:
                            #ok these are inner lines of grid
                            #flip if necessary
                            if ok1==2: p1,p2=p2,p1
                            if ok2==2: q1,q2=q2,q1

                            #both lines now go from p1->p2, q1->q2 and 
                            #intersect at 1/3
                            #calculate IT
                            z1=(q1[0]+2.0/3*(p2[0]-p1[0]),q1[1]+2.0/3*(p2[1]-p1[1]))
                            z2=(p1[0]+2.0/3*(q2[0]-q1[0]),p1[1]+2.0/3*(q2[1]-q1[1]))
                            z=(p1[0]-1.0/3*(q2[0]-q1[0]),p1[1]-1.0/3*(q2[1]-q1[1]))
                            IT=(z,z1,z2,dd1)
                            matched=1

                #only single one matched!! Could be corner
                if matched==1:

                    #also test angle
                    a1 = atan2(p2[1]-p1[1],p2[0]-p1[0])
                    a2 = atan2(q2[1]-q1[1],q2[0]-q1[0])
                    if a1<0:a1+=pi
                    if a2<0:a2+=pi
                    ang=abs(abs(a2-a1)-pi/2)
                    if ang < 0.5:
                        totry.append(IT)
                        #cv.Circle(sg, IT[0], 5, (255,255,255))


        #now check if any points in totry are consistent!
        #t=4
        res=[]
        for i in range(len(totry)):

            p,p1,p2,dd=totry[i]
            a1 = atan2(p1[1]-p[1],p1[0]-p[0])
            a2 = atan2(p2[1]-p[1],p2[0]-p[0])
            if a1<0:a1+=pi
            if a2<0:a2+=pi
            dd=1.7*dd
            evidence=0
            totallines=0

            #cv.Line(sg,p,p2,(0,255,0))
            #cv.Line(sg,p,p1,(0,255,0))

            #affine transform to local coords
            A = matrix([[p2[0]-p[0],p1[0]-p[0],p[0]],[p2[1]-p[1],p1[1]-p[1],p[1]],[0,0,1]])
            Ainv= A.I

            v=matrix([[p1[0]],[p1[1]],[1]])

            #check likelihood of this coordinate system. iterate all lines
            #and see how many align with grid
            for j in range(len(li)):

                #test angle consistency with either one of the two angles
                a = angs[j]
                ang1=abs(abs(a-a1)-pi/2)
                ang2=abs(abs(a-a2)-pi/2)
                if ang1 > 0.1 and ang2>0.1: continue

                #test position consistency.
                q1,q2= li[j]
                qwe=0.06

                #test one endpoint
                v=matrix([[q1[0]],[q1[1]],[1]])
                vp=Ainv*v; #project it
                if vp[0,0] > 1.1 or vp[0,0]<-0.1: continue
                if vp[1,0] > 1.1 or vp[1,0]<-0.1: continue
                if abs(vp[0,0]-1/3.0)>qwe and abs(vp[0,0]-2/3.0)>qwe and \
                    abs(vp[1,0]-1/3.0)>qwe and abs(vp[1,0]-2/3.0)>qwe: continue

                #the other end point
                v=matrix([[q2[0]],[q2[1]],[1]])
                vp=Ainv*v;
                if vp[0,0] > 1.1 or vp[0,0]<-0.1: continue
                if vp[1,0] > 1.1 or vp[1,0]<-0.1: continue
                if abs(vp[0,0]-1/3.0)>qwe and abs(vp[0,0]-2/3.0)>qwe and \
                    abs(vp[1,0]-1/3.0)>qwe and abs(vp[1,0]-2/3.0)>qwe: continue

                #cv.Circle(sg, q1, 3, (255,255,0))
                #cv.Circle(sg, q2, 3, (255,255,0))
                #cv.Line(sg,q1,q2,(0,255,255))
                evidence+=1

            #print evidence
            res.append((evidence, (p,p1,p2)))

        minch=10000
        res.sort(reverse=True)
        #print [a[0] for a in res]
        if len(res)>0:
            minps=[]
            pt=[]
            #among good observations find best one that fits with last one
            for i in range(len(res)):
                if res[i][0]>0.05*dects:
                    #OK WE HAVE GRID
                    p,p1,p2=res[i][1]
                    p3= (p2[0]+p1[0]-p[0], p2[1]+p1[1]-p[1])

                    #cv.Line(sg,p,p1,(0,255,0),2)
                    #cv.Line(sg,p,p2,(0,255,0),2)
                    #cv.Line(sg,p2,p3,(0,255,0),2)
                    #cv.Line(sg,p3,p1,(0,255,0),2)
                    #cen=(0.5*p2[0]+0.5*p1[0],0.5*p2[1]+0.5*p1[1])
                    #cv.Circle(sg, cen, 20, (0,0,255),5)
                    #cv.Line(sg, (0,cen[1]), (320,cen[1]),(0,255,0),2)
                    #cv.Line(sg, (cen[0],0), (cen[0],240), (0,255,0),2)

                    w=[p,p1,p2,p3]
                    p3= (prevface[2][0]+prevface[1][0]-prevface[0][0], 
                         prevface[2][1]+prevface[1][1]-prevface[0][1])
                    tc= (prevface[0],prevface[1],prevface[2],p3)
                    ch=compfaces(w,tc) 
                    if ch<minch:
                        minch=ch
                        minps= (p,p1,p2)

            if len(minps)>0:
                prevface=minps
                #print minch

                if minch<10:
                    #good enough!
                    succ+=1
                    pt=prevface
                    detected=1

            else:
                succ=0

            #we matched a few times same grid
            #coincidence? I think NOT!!! Init LK tracker
            if succ>2 and 1:
                #initialize features for LK
                pt=[]
                for i in [1.0/3, 2.0/3]:
                    for j in [1.0/3, 2.0/3]:
                        pt.append((p0[0]+i*v1[0]+j*v2[0], p0[1]+i*v1[1]+j*v2[1]))

                #refine points slightly
                #features = cv.FindCornerSubPix (
                #grey,
                #pt,
                #(win_size, win_size),  (-1, -1),
                #(cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS,
                #20, 0.03))
                features=pt
                tracking=1
                succ=0

    else:
        #we are in tracking mode, we need to fill in pt[] array
        #calculate the pt array for drawing from features
        #for p in features:
        #    cv.Circle(sg, p, 3, (255,255,255),-1)
        p=features[0]
        p1=features[1]
        p2=features[2]

        print p
        print p1
        print p2

        v1=(p1[0]-p[0],p1[1]-p[1])
        v2=(p2[0]-p[0],p2[1]-p[1])

        pt=[(p[0]-v1[0]-v2[0], p[1]-v1[1]-v2[1]),
            (p[0]+2*v2[0]-v1[0], p[1]+2*v2[1]-v1[1]),
            (p[0]+2*v1[0]-v2[0], p[1]+2*v1[1]-v2[1])]

        prevface=[pt[0],pt[1],pt[2]]

    #use pt[] array to do drawing
    if (detected or undetectednum<1) and dodetection:
        #undetectednum 'fills in' a few detection to make
        #things look smoother in case we fall out one frame
        #for some reason
        if not detected: 
            undetectednum+=1
            pt=lastpt
        if detected: 
            undetectednum=0
            lastpt=pt

        print pt
        new_pt = []
        for npt in pt:
          new_pt.append((int(round(npt[0])), int(round(npt[1]))))

        pt = new_pt
        print pt

        #~ pt = [p = (round(p[0]), round(p[1])) for p in pt]
        #~ pt = [p = (round(p[0]), round(p[1])) for p in pt]
        #~ for p in pt:
          #~ print p
          #~ return int(round(p[0])), int(round(p[1]))
          #~ [p = (round(p[0]), round(p[1])) for p in pt]
          #~ print "new"
          #~ print p

        print pt
        #extract the colors
        #convert to HSV
        cv.CvtColor(sgc, hsv, cv.CV_RGB2HSV)
        cv.Split(hsv, hue, sat, val, None)

        #do the drawing. pt array should store p,p1,p2
        p3= (pt[2][0]+pt[1][0]-pt[0][0], pt[2][1]+pt[1][1]-pt[0][1])
        cv.Line(sg,pt[0],pt[1],(0,255,0),2)
        cv.Line(sg,pt[1],p3,(0,255,0),2)
        cv.Line(sg,p3,pt[2],(0,255,0),2)
        cv.Line(sg,pt[2],pt[0],(0,255,0),2)

        #first sort the points so that 0 is BL 1 is UL and 2 is BR
        pt=winded(pt[0],pt[1],pt[2],p3)

        #find the coordinates of the 9 places we want to extract over
        v1=(pt[1][0]-pt[0][0], pt[1][1]-pt[0][1])
        v2=(pt[3][0]-pt[0][0], pt[3][1]-pt[0][1])
        p0=(pt[0][0],pt[0][1])

        ep=[]
        midpts=[]
        i=1
        j=5
        for k in range(9):
            ep.append((p0[0]+i*v1[0]/6.0+j*v2[0]/6.0, p0[1]+i*v1[1]/6.0+j*v2[1]/6.0))
            i=i+2
            if i==7:
                i=1
                j=j-2

        rad= ptdst(v1,(0.0,0.0))/6.0
        cs=[]
        hsvcs=[]
        den=2

        for i,p in enumerate(ep):
            if p[0]>rad and p[0]<W-rad and p[1]>rad and p[1]<H-rad:

                #valavg=val[int(p[1]-rad/3):int(p[1]+rad/3),int(p[0]-rad/3):int(p[0]+rad/3)]
                #mask=cv.CreateImage(cv.GetDims(valavg), 8, 1 )

                print "p",p
                p = (int(round(p[0])), int(round(p[1])))
                print "p",p
                print "sg",sg
                rad = int(rad)
                print "rad",rad
                col=cv.Avg(sgc[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])
                col=cv.Avg(sgc[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])
                cv.Circle(sg, p, rad, col,-1)
                if i==4:
                    cv.Circle(sg, p, rad, (0,255,255),2)
                else:
                    cv.Circle(sg, p, rad, (255,255,255),2)

                hueavg= cv.Avg(hue[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])
                satavg= cv.Avg(sat[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])

                cv.PutText(sg, `int(hueavg[0])`, (p[0]+70,p[1]), ff,(255,255,255))
                cv.PutText(sg, `int(satavg[0])`, (p[0]+70,p[1]+10), ff,(255,255,255))

                if extract:
                    cs.append(col)
                    hsvcs.append((hueavg[0],satavg[0]))

        if extract:
            extract= not extract
            colors[selected]=cs
            hsvs[selected]=hsvcs
            selected=min(selected+1,5)

    #draw faces of hte extracted cubes
    x=20
    y=20
    s=13
    for i in range(6):
        if not colors[i]: 
            x+=3*s+10
            continue
        #draw the grid on top
        cv.Rectangle(sg, (x-1,y-1), (x+3*s+5,y+3*s+5), (0,0,0),-1)
        x1,y1=x,y
        x2,y2=x1+s,y1+s
        for j in range(9):
            if didassignments:
                cv.Rectangle(sg, (x1,y1), (x2,y2), mycols[assigned[i][j]],-1)
            else:
                cv.Rectangle(sg, (x1,y1), (x2,y2), colors[i][j],-1)
            x1+=s+2
            if j==2 or j==5: 
                x1=x
                y1+=s+2
            x2,y2=x1+s,y1+s
        x+=3*s+10

    #draw the selection rectangle
    x=20
    y=20
    for i in range(selected):x+=3*s+10
    cv.Rectangle(sg, (x-1,y-1), (x+3*s+5,y+3*s+5), (0,0,255),2)

    lastdetected= len(li)
    #swapping for LK
    prev_grey, grey = grey, prev_grey
    prev_pyramid, pyramid = pyramid, prev_pyramid
    #draw img


    #cv.CvtColor(sg,sg2,cv.CV_RGB2HSV)
    #cv.Split(sg2, hue, sat, val, None)

    #cv.Smooth(sg,sg,cv.CV_GAUSSIAN, 5)
    cv.ShowImage("Fig",sg)

    counter+=1 #global counter
    # handle events
    c = cv.WaitKey(10) % 0x100
    if c == 27: break #ESC

    # processing depending on the character
    if 32 <= c and c < 128:
      cc = chr(c).lower()
      if cc== ' ':
        #EXTRACT COLORS!!!
        extract=True
      if cc=='r':
        #reset
        extract=False
        selected=0
        colors=[[] for i in range(6)]
        didassignments=False
        assigned=[[-1 for i in range(9)] for j in range(6)]
        for i in range(6):
            assigned[i][4]=i    
        didassignments=False

      if cc=='n':
        selected=selected-1
        if selected<0: selected=5
      if cc=='m':
        selected=selected+1
        if selected>5: selected=0

      if cc=='b':
        onlyBlackCubes=not onlyBlackCubes
      if cc=='d':
        dodetection=not dodetection
      if cc=='q':
        print hsvs
      if cc=='p':
        #process!!!!
        processColors()
      if cc=='u':
        didassignments=not didassignments
      if cc=='s':
        cv.SaveImage("C:\\code\\img\\pic"+`time()`+".jpg",sgc)


cv.DestroyWindow("Fig")
#/usr/bin/python
将cv2.cv作为cv导入
导入系统
从随机导入制服
从时间上导入睡眠
从数学输入sin、cos、pi、atan2、sqrt
从numpy导入矩阵
从时间导入时间
从随机输入范围
捕获=cv.CreateCameraCapture(0)
简历名称(图1)
帧=cv.QueryFrame(捕获)
S1,S2=cv.GetSize(帧)
den=2
sg=cv.CreateImage((S1/den,S2/den),8,3)
sg2=cv.CreateImage((S1/den,S2/den),8,3)
sg3=cv.CreateImage((S1/den,S2/den),8,3)
sg4=cv.CreateImage((S1/den,S2/den),8,3)
sg5=cv.CreateImage((S1/den,S2/den),8,3)
sgc=cv.CreateImage((S1/den,S2/den),8,3)
hsv=cv.CreateImage((S1/den,S2/den),8,3)
dst=cv.CreateImage((S1/den,S2/den),8,1)
dst2=cv.CreateImage((S1/den,S2/den),8,1)
d=cv.CreateImage((S1/den,S2/den),cv.IPL_深度_16S,1)
d2=cv.CreateImage((S1/den,S2/den),8,1)
d3=cv.CreateImage((S1/den,S2/den),8,1)
b=cv.CreateImage((S1/den,S2/den),8,1)
b4=cv.CreateImage((S1/den,S2/den),8,1)
两者都=cv.CreateImage((S1/den,S2/den),8,1)
harr=cv.CreateImage((S1/den,S2/den),32,1)
W、 H=S1/den,S2/den
lastdetected=0
THR=100
dects=50#理想的检测线数
色调=cv.CreateImage((S1/den,S2/den),8,1)
sat=cv.CreateImage((S1/den,S2/den),8,1)
val=cv.CreateImage((S1/den,S2/den),8,1)
#存储组成面的坐标。顺序:p、p1、p3、p2(即逆时针绕组)
prevface=[(0,0)、(5,0)、(0,5)]
dodetection=True
onlyBlackCubes=False
def网格(p):
“”“将带整数坐标的最近点返回到p.”“”
返回int(round(p[0])),int(round(p[1]))
def交叉段(x1、x2、x3、x4、y1、y2、y3、y4):
den=(y4-y3)*(x2-x1)-(x4-x3)*(y2-y1)
如果abs(den)245):
#贴纸可能会被洗掉。让我们到此为止
距离=距离+300.0
返回区
def组件面(f1、f2):
totd=0
对于f1中的p1:
心智=10000
对于f2中的p2:
d=ptdst(p1,p2)
如果d0:
minps=[]
pt=[]
#在好的观察结果中,找出最适合最后一个的
对于范围内的i(len(res)):
如果res[i][0]>0.05*dects:
#好的,我们有网格
p、 p1,p2=res[i][1]
p3=(p2[0]+p1[0]-p[0],p2[1]+p1[1]-p[1])
#等速线(sg、p、p1、(0255,0)、2)
#等速线(sg,p,p2,(0255,0),2)
#等速线(sg,p2,p3,(0255,0),2)
#等速线(sg,p3,p1,(0255,0),2)
#cen=(0.5*p2[0]+0.5*p1[0],0.5*p2[1]+0.5*p1[1])
#等速圆周(sg,cen,20,(0,0255),5)
#等速线(sg,(0,cen[1]),(320,cen[1]),(0255,0),2)
#等速线(sg,(cen[0],0),(cen[0],240),(0255,0),2)
w=[p,p1,p2,p3]
p3=(prevface[2][0]+prevface[1][0]-prevface[0][0],
prevface[2][1]+prevface[1][1]-prevface[0][1])
tc=(前置面[0],前置面[1],前置面[2],p3)
ch=组件面(w,tc)
如果ch0:
prevface=minps
#印泥
如果minch2和minch1:
#初始化LK的功能
pt=[]
对于[1.0/3,2.0/3]中的i:
对于[1.0/3,2.0/3]中的j:
附加部分((p0[0]+i*v1[0]+j*v2[0],p0[1]+i*v1[1]+j*v2[1]))
#稍微细化点
#功能=cv.FindCornerSubPix(
#灰色,
#pt,
#(win_大小,win_大小),(-1,-1),
#(cv.cv_TERMCRIT_ITER | cv.cv_TERMCRIT_EPS,
#20, 0.03))
特征=pt
跟踪=1
成功率=0
其他:
#我们处于跟踪模式,需要填写pt[]数组
#计算从要素绘制的pt阵列
#对于功能中的p:
#等速圆周(sg,p,3,(255255),-1)
p=特征[0]
p1=特征[1]
p2=特征[2]
打印p
打印p1
打印p2
v1=(p1[0]-p[0],p1[1]-p[1])
v2=(p2[0]-p[0],p2[1]-p[1])
pt=[(p[0]-v1[0]-v2[0],p[1]-v1[1]-v2[1]),
(p[0]+2*v2[0]-v1[0],p[1]+2*v2[1]-v1[1]),
(p[0]+2*v1[0]-v2[0],p[1]+2*v1[1]-v2[1])]
prevface=[pt[0],pt[1],pt[2]]
#使用pt[]数组进行绘图

如果(检测到的或未检测到的)numrad和p[0]rad和p[1]不希望有人找到所有这些代码来确定问题。请编写一个简单的示例,再现您所面临的问题,然后