Algorithm 如何计算3D莫顿数(交错3整数位)

Algorithm 如何计算3D莫顿数(交错3整数位),algorithm,bit-manipulation,z-order-curve,Algorithm,Bit Manipulation,Z Order Curve,我正在寻找一种快速计算3D莫顿数的方法。对于2D莫顿数有一个基于神奇数字的技巧,但如何将其扩展到3D似乎并不明显 所以基本上我有3个10位的数字,我想用最少的运算次数把它们交织成一个30位的数字 如果您有4K可用空间,最简单的可能是查找表: static uint32_t t [ 1024 ] = { 0, 0x1, 0x8, ... }; uint32_t m ( int a, int b, int c ) { return t[a] | ( t[b] << 1 ) |

我正在寻找一种快速计算3D莫顿数的方法。对于2D莫顿数有一个基于神奇数字的技巧,但如何将其扩展到3D似乎并不明显


所以基本上我有3个10位的数字,我想用最少的运算次数把它们交织成一个30位的数字

如果您有4K可用空间,最简单的可能是查找表:

static uint32_t t [ 1024 ] = { 0, 0x1, 0x8, ... };

uint32_t m ( int a, int b, int c )
{
    return t[a] | ( t[b] << 1 ) | ( t[c] << 2 );
}
static uint32_t t[1024]={0,0x1,0x8,…};
uint32_t m(内部a、内部b、内部c)
{

返回t[a]|(t[b]以下代码查找三个10位输入数的莫顿数。它使用链接中的idee并在步骤5-5、3-2-3-2、2-1-1-1-2-1-1-1和1-1-1-1-1-1-1-1-1-1-1-1-1中执行位扩展,因为10不是2的幂

......................9876543210
............98765..........43210
........987....56......432....10
......98..7..5..6....43..2..1..0
....9..8..7..5..6..4..3..2..1..0
在上面,您可以看到第一个步骤之前和四个步骤之后的每个位的位置

public static Int32 GetMortonNumber(Int32 x, Int32 y, Int32 z)
{
    return SpreadBits(x, 0) | SpreadBits(y, 1) | SpreadBits(z, 2);
}

public static Int32 SpreadBits(Int32 x, Int32 offset)
{
    if ((x < 0) || (x > 1023))
    {
        throw new ArgumentOutOfRangeException();
    }

    if ((offset < 0) || (offset > 2))
    {
        throw new ArgumentOutOfRangeException();
    }

    x = (x | (x << 10)) & 0x000F801F;
    x = (x | (x <<  4)) & 0x00E181C3;
    x = (x | (x <<  2)) & 0x03248649;
    x = (x | (x <<  2)) & 0x09249249;

    return x << offset;
}
publicstaticint32getmortonnumber(int32x,int32y,int32z)
{
返回扩展位(x,0)|扩展位(y,1)|扩展位(z,2);
}
公共静态Int32扩展位(Int32 x,Int32偏移)
{
如果((x<0)|(x>1023))
{
抛出新ArgumentOutOfRangeException();
}
如果((偏移量<0)| |(偏移量>2))
{
抛出新ArgumentOutOfRangeException();
}

x=(x |)(x可以使用相同的技术。我假设变量包含32位整数,最高22位设置为
0
(这比必要的限制要严格一些)。对于包含三个10位整数之一的每个变量
x
,我们执行以下操作:

x = (x | (x << 16)) & 0x030000FF;
x = (x | (x <<  8)) & 0x0300F00F;
x = (x | (x <<  4)) & 0x030C30C3;
x = (x | (x <<  2)) & 0x09249249;
这项技术的工作方式如下:“拆分”上方的
x=…
行例如,如果我们考虑三个4位整数,我们将一个比特1234分成000012000034个,其中0为其他整数保留。在下一个步骤中,我们以相同的方式分裂12和34,得到001002003004。不要在两组中做一个很好的重复划分,你可以只考虑16个比特,最终丢失最高的。
正如您从第一行看到的,您实际上只需要对每个输入整数
x
使用它就可以了
x&0x03000000==0

很好的时机,我上个月刚刚做了这个

关键是要实现两个功能,一个是将位分散到每三位。 然后我们可以将其中三个组合在一起(对最后两个进行移位),以得到最终的莫顿交错值

此代码从高位开始交错(对于定点值来说更符合逻辑)。如果您的应用程序每个组件只有10位,只需将每个值左移22,以使其从高位开始

/* Takes a value and "spreads" the HIGH bits to lower slots to seperate them.
   ie, bit 31 stays at bit 31, bit 30 goes to bit 28, bit 29 goes to bit 25, etc.
   Anything below bit 21 just disappears. Useful for interleaving values
   for Morton codes. */
inline unsigned long spread3(unsigned long x)
{
  x=(0xF0000000&x) | ((0x0F000000&x)>>8) | (x>>16); // spread top 3 nibbles
  x=(0xC00C00C0&x) | ((0x30030030&x)>>4);
  x=(0x82082082&x) | ((0x41041041&x)>>2);
  return x;
}

inline unsigned long morton(unsigned long x, unsigned long y, unsigned long z)
{
  return spread3(x) | (spread3(y)>>1) | (spread3(z)>>2);
}

我把上面的代码修改成3个16位的数字合并成一个48位的(实际上是64位的)数字,也许这样可以省去一些思考的时间

#include <inttypes.h>
#include <assert.h>
uint64_t zorder3d(uint64_t x, uint64_t y, uint64_t z){
     static const uint64_t B[] = {0x00000000FF0000FF, 0x000000F00F00F00F,
                                    0x00000C30C30C30C3, 0X0000249249249249};           
     static const int S[] =  {16, 8, 4, 2}; 
     static const uint64_t MAXINPUT = 65536;

     assert( ( (x < MAXINPUT) ) && 
      ( (y < MAXINPUT) ) && 
      ( (z < MAXINPUT) )
     );

     x = (x | (x << S[0])) & B[0];
     x = (x | (x << S[1])) & B[1];
     x = (x | (x << S[2])) & B[2];
     x = (x | (x << S[3])) & B[3];

     y = (y | (y << S[0])) & B[0];
     y = (y | (y << S[1])) & B[1];
     y = (y | (y << S[2])) & B[2];
     y = (y | (y << S[3])) & B[3];

     z = (z | (z <<  S[0])) & B[0];
     z = (z | (z <<  S[1])) & B[1];
     z = (z | (z <<  S[2])) & B[2];
     z = (z | (z <<  S[3])) & B[3];

     return ( x | (y << 1) | (z << 2) );
    }
#包括
#包括
uint64_t zorder3d(uint64_t x,uint64_t y,uint64_t z){
静态常数uint64_t B[]={0x00000000FF0000FF,0x000000F00F00F00F,
0x00000C30C30C30C3,0x0000249249249};
静态常量int S[]={16,8,4,2};
静态常数uint64\u t最大输入=65536;
断言((xx=(x |)(x我用Ruby制作了一个生成器,用于生成任意长度的编码方法:

def morton_code_for(bits)
  method = ''

  limit_mask = (1 << (bits * 3)) - 1
  split = (2 ** ((Math.log(bits) / Math.log(2)).to_i + 1)).to_i
  level = 1

  puts "// Coding for 3 #{bits}-bit values"

  loop do
    shift = split
    split /= 2
    level *= 2

    mask = ([ '1' * split ] * level).join('0' * split * 2).to_i(2) & limit_mask

    expression = "v = (v | (v << %2d)) & 0x%016x;" % [ shift, mask ]

    method << expression

    puts "%s // 0b%064b" % [ expression, mask ]

    break if (split <= 1)
  end

  puts
  print "// Test of method results: "
  v = (1 << bits) - 1
  puts eval(method).to_s(2)
end

morton_code_for(21)
def morton_代码(位)
方法=“”

limit_mask=(1以下是为三维点生成大小为64位的Morton密钥的代码段

using namespace std;

unsigned long long spreadBits(unsigned long long x)
{
    x=(x|(x<<20))&0x000001FFC00003FF;
    x=(x|(x<<10))&0x0007E007C00F801F;
    x=(x|(x<<4))&0x00786070C0E181C3;
    x=(x|(x<<2))&0x0199219243248649;
    x=(x|(x<<2))&0x0649249249249249;
    x=(x|(x<<2))&0x1249249249249249;
    return x;
}

int main()
{
    unsigned long long x,y,z,con=1;
    con=con<<63;
    printf("%#llx\n",(spreadBits(x)|(spreadBits(y)<<1)|(spreadBits(z)<<2))|con);    
}
使用名称空间std;
无符号长扩展位(无符号长x)
{

x=(x|(x我今天遇到了一个类似的问题,但不是3个数字,我必须组合任意数目的任意位长度的数字。我使用了我自己的一种位扩展和屏蔽算法,并将其应用于C#bigInteger。这是我编写的代码。作为编译步骤,它计算出给定数目的dimensio的幻数和屏蔽ns和位深度。然后您可以重用对象进行多次转换

/// <summary>
/// Convert an array of integers into a Morton code by interleaving the bits.
/// Create one Morton object for a given pair of Dimension and BitDepth and reuse if when encoding multiple 
/// Morton numbers.
/// </summary>  
public class Morton
{
    /// <summary>
    /// Number of bits to use to represent each number being interleaved.
    /// </summary>
    public int BitDepth { get; private set; }

    /// <summary>
    /// Count of separate numbers to interleave into a Morton number.
    /// </summary>
    public int Dimensions { get; private set; }

    /// <summary>
    /// The MagicNumbers spread the bits out to the right position.
    /// Each must must be applied and masked, because the bits would overlap if we only used one magic number.
    /// </summary>
    public BigInteger LargeMagicNumber { get; private set; }
    public BigInteger SmallMagicNumber { get; private set; }

    /// <summary>
    /// The mask removes extraneous bits that were spread into positions needed by the other dimensions.
    /// </summary>
    public BigInteger Mask { get; private set; }

    public Morton(int dimensions, int bitDepth)
    {
        BitDepth = bitDepth;
        Dimensions = dimensions;
        BigInteger magicNumberUnit = new BigInteger(1UL << (int)(Dimensions - 1));
        LargeMagicNumber = magicNumberUnit;
        BigInteger maskUnit = new BigInteger(1UL << (int)(Dimensions - 1));
        Mask = maskUnit;
        for (var i = 0; i < bitDepth - 1; i++)
        {
            LargeMagicNumber = (LargeMagicNumber << (Dimensions - 1)) | (i % 2 == 1 ? magicNumberUnit : BigInteger.Zero);
            Mask = (Mask << Dimensions) | maskUnit;       
        }
        SmallMagicNumber = (LargeMagicNumber >> BitDepth) << 1; // Need to trim off pesky ones place bit.
    }

    /// <summary>
    /// Interleave the bits from several integers into a single BigInteger.
    /// The high-order bit from the first number becomes the high-order bit of the Morton number.
    /// The high-order bit of the second number becomes the second highest-ordered bit in the Morton number.
    /// 
    /// How it works.
    /// 
    /// When you multupliy by the magic numbers you make multiple copies of the the number they are multplying, 
    /// each shifted by a different amount.
    /// As it turns out, the high order bit of the highest order copy of a number is N bits to the left of the 
    /// second bit of the second copy, and so forth. 
    /// This is because each copy is shifted one bit less than N times the copy number.
    /// After that, you apply the AND-mask to unset all bits that are not in position.
    /// 
    /// Two magic numbers are needed because since each copy is shifted one less than the bitDepth, consecutive
    /// copies would overlap and ruin the algorithm. Thus one magic number (LargeMagicNumber) handles copies 1, 3, 5, etc, while the 
    /// second (SmallMagicNumber) handles copies 2, 4, 6, etc.
    /// </summary>
    /// <param name="vector">Integers to combine.</param>
    /// <returns>A Morton number composed of Dimensions * BitDepth bits.</returns>
    public BigInteger Interleave(int[] vector)
    {
        if (vector == null || vector.Length != Dimensions)
            throw new ArgumentException("Interleave expects an array of length " + Dimensions, "vector");
        var morton = BigInteger.Zero;
        for (var i = 0; i < Dimensions; i++)
        {
            morton |= (((LargeMagicNumber * vector[i]) & Mask) | ((SmallMagicNumber * vector[i]) & Mask)) >> i;
        }
        return morton;
    }


    public override string ToString()
    {
        return "Morton(Dimension: " + Dimensions + ", BitDepth: " + BitDepth 
            + ", MagicNumbers: " + Convert.ToString((long)LargeMagicNumber, 2) + ", " + Convert.ToString((long)SmallMagicNumber, 2)
            + ", Mask: " + Convert.ToString((long)Mask, 2) + ")";
    }
}
//
///通过交错位将整数数组转换为莫顿码。
///为给定的维度和位深度对创建一个Morton对象,并在编码多个维度和位深度时重用
///莫顿数字。
///   
公共级莫顿
{
/// 
///用于表示被交织的每个数字的位数。
/// 
公共int位深度{get;私有集;}
/// 
///要交织成莫顿数的独立数的计数。
/// 
公共整数维{get;private set;}
/// 
///MagicNumber将位分散到正确的位置。
///每一个都必须被应用和屏蔽,因为如果我们只使用一个幻数,位就会重叠。
/// 
public biginger LargeMagicNumber{get;private set;}
public BigInteger SmallMagicNumber{get;private set;}
/// 
///遮罩会移除分散到其他维度所需位置的无关位。
/// 
public BigInteger掩码{get;private set;}
公共莫顿(整数维,整数位深度)
{
比特深度=比特深度;
尺寸=尺寸;

BigInteger magicNumberUnit=新的BigInteger(1UL这是我使用python脚本的解决方案:

我从他的评论中得到了暗示:
阅读下面的长篇评论!我们需要跟踪哪些位需要走多远!
然后在每个步骤中,我们选择这些位并移动它们,然后应用位掩码(请参见最后几行注释)来屏蔽它们

Bit Distances: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Bit Distances (binary): ['0', '10', '100', '110', '1000', '1010', '1100', '1110', '10000', '10010']
Shifting bits by 1   for bits idx: []
Shifting bits by 2   for bits idx: [1, 3, 5, 7, 9]
Shifting bits by 4   for bits idx: [2, 3, 6, 7]
Shifting bits by 8   for bits idx: [4, 5, 6, 7]
Shifting bits by 16  for bits idx: [8, 9]
BitPositions: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Shifted bef.:   0000 0000 0000 0000 0000 0011 0000 0000 hex: 0x300
Shifted:        0000 0011 0000 0000 0000 0000 0000 0000 hex: 0x3000000
NonShifted:     0000 0000 0000 0000 0000 0000 1111 1111 hex: 0xff
Bitmask is now: 0000 0011 0000 0000 0000 0000 1111 1111 hex: 0x30000ff

Shifted bef.:   0000 0000 0000 0000 0000 0000 1111 0000 hex: 0xf0
Shifted:        0000 0000 0000 0000 1111 0000 0000 0000 hex: 0xf000
NonShifted:     0000 0011 0000 0000 0000 0000 0000 1111 hex: 0x300000f
Bitmask is now: 0000 0011 0000 0000 1111 0000 0000 1111 hex: 0x300f00f

Shifted bef.:   0000 0000 0000 0000 1100 0000 0000 1100 hex: 0xc00c
Shifted:        0000 0000 0000 1100 0000 0000 1100 0000 hex: 0xc00c0
NonShifted:     0000 0011 0000 0000 0011 0000 0000 0011 hex: 0x3003003
Bitmask is now: 0000 0011 0000 1100 0011 0000 1100 0011 hex: 0x30c30c3

Shifted bef.:   0000 0010 0000 1000 0010 0000 1000 0010 hex: 0x2082082
Shifted:        0000 1000 0010 0000 1000 0010 0000 1000 hex: 0x8208208
NonShifted:     0000 0001 0000 0100 0001 0000 0100 0001 hex: 0x1041041
Bitmask is now: 0000 1001 0010 0100 1001 0010 0100 1001 hex: 0x9249249

x &= 0x3ff
x = (x | x << 16) & 0x30000ff   <<< THIS IS THE MASK for shifting 16 (for bit 8 and 9)
x = (x | x << 8) & 0x300f00f
x = (x | x << 4) & 0x30c30c3
x = (x | x << 2) & 0x9249249
位距离:[0,2,4,6,8,10,12,14,16,18]
位距离(二进制):['0','10','100','110','1000','1010','1100','1110','10000','10010']
将位idx:[]的位移位1
将位idx的位移位2:[1,3,5,7,9]
将位移位4,以进行位转换
// Coding for 3 21-bit values
v = (v | (v << 32)) & 0x7fff00000000ffff; // 0b0111111111111111000000000000000000000000000000001111111111111111
v = (v | (v << 16)) & 0x00ff0000ff0000ff; // 0b0000000011111111000000000000000011111111000000000000000011111111
v = (v | (v <<  8)) & 0x700f00f00f00f00f; // 0b0111000000001111000000001111000000001111000000001111000000001111
v = (v | (v <<  4)) & 0x30c30c30c30c30c3; // 0b0011000011000011000011000011000011000011000011000011000011000011
v = (v | (v <<  2)) & 0x1249249249249249; // 0b0001001001001001001001001001001001001001001001001001001001001001

// Test of method results: 1001001001001001001001001001001001001001001001001001001001001
using namespace std;

unsigned long long spreadBits(unsigned long long x)
{
    x=(x|(x<<20))&0x000001FFC00003FF;
    x=(x|(x<<10))&0x0007E007C00F801F;
    x=(x|(x<<4))&0x00786070C0E181C3;
    x=(x|(x<<2))&0x0199219243248649;
    x=(x|(x<<2))&0x0649249249249249;
    x=(x|(x<<2))&0x1249249249249249;
    return x;
}

int main()
{
    unsigned long long x,y,z,con=1;
    con=con<<63;
    printf("%#llx\n",(spreadBits(x)|(spreadBits(y)<<1)|(spreadBits(z)<<2))|con);    
}
/// <summary>
/// Convert an array of integers into a Morton code by interleaving the bits.
/// Create one Morton object for a given pair of Dimension and BitDepth and reuse if when encoding multiple 
/// Morton numbers.
/// </summary>  
public class Morton
{
    /// <summary>
    /// Number of bits to use to represent each number being interleaved.
    /// </summary>
    public int BitDepth { get; private set; }

    /// <summary>
    /// Count of separate numbers to interleave into a Morton number.
    /// </summary>
    public int Dimensions { get; private set; }

    /// <summary>
    /// The MagicNumbers spread the bits out to the right position.
    /// Each must must be applied and masked, because the bits would overlap if we only used one magic number.
    /// </summary>
    public BigInteger LargeMagicNumber { get; private set; }
    public BigInteger SmallMagicNumber { get; private set; }

    /// <summary>
    /// The mask removes extraneous bits that were spread into positions needed by the other dimensions.
    /// </summary>
    public BigInteger Mask { get; private set; }

    public Morton(int dimensions, int bitDepth)
    {
        BitDepth = bitDepth;
        Dimensions = dimensions;
        BigInteger magicNumberUnit = new BigInteger(1UL << (int)(Dimensions - 1));
        LargeMagicNumber = magicNumberUnit;
        BigInteger maskUnit = new BigInteger(1UL << (int)(Dimensions - 1));
        Mask = maskUnit;
        for (var i = 0; i < bitDepth - 1; i++)
        {
            LargeMagicNumber = (LargeMagicNumber << (Dimensions - 1)) | (i % 2 == 1 ? magicNumberUnit : BigInteger.Zero);
            Mask = (Mask << Dimensions) | maskUnit;       
        }
        SmallMagicNumber = (LargeMagicNumber >> BitDepth) << 1; // Need to trim off pesky ones place bit.
    }

    /// <summary>
    /// Interleave the bits from several integers into a single BigInteger.
    /// The high-order bit from the first number becomes the high-order bit of the Morton number.
    /// The high-order bit of the second number becomes the second highest-ordered bit in the Morton number.
    /// 
    /// How it works.
    /// 
    /// When you multupliy by the magic numbers you make multiple copies of the the number they are multplying, 
    /// each shifted by a different amount.
    /// As it turns out, the high order bit of the highest order copy of a number is N bits to the left of the 
    /// second bit of the second copy, and so forth. 
    /// This is because each copy is shifted one bit less than N times the copy number.
    /// After that, you apply the AND-mask to unset all bits that are not in position.
    /// 
    /// Two magic numbers are needed because since each copy is shifted one less than the bitDepth, consecutive
    /// copies would overlap and ruin the algorithm. Thus one magic number (LargeMagicNumber) handles copies 1, 3, 5, etc, while the 
    /// second (SmallMagicNumber) handles copies 2, 4, 6, etc.
    /// </summary>
    /// <param name="vector">Integers to combine.</param>
    /// <returns>A Morton number composed of Dimensions * BitDepth bits.</returns>
    public BigInteger Interleave(int[] vector)
    {
        if (vector == null || vector.Length != Dimensions)
            throw new ArgumentException("Interleave expects an array of length " + Dimensions, "vector");
        var morton = BigInteger.Zero;
        for (var i = 0; i < Dimensions; i++)
        {
            morton |= (((LargeMagicNumber * vector[i]) & Mask) | ((SmallMagicNumber * vector[i]) & Mask)) >> i;
        }
        return morton;
    }


    public override string ToString()
    {
        return "Morton(Dimension: " + Dimensions + ", BitDepth: " + BitDepth 
            + ", MagicNumbers: " + Convert.ToString((long)LargeMagicNumber, 2) + ", " + Convert.ToString((long)SmallMagicNumber, 2)
            + ", Mask: " + Convert.ToString((long)Mask, 2) + ")";
    }
}
Bit Distances: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Bit Distances (binary): ['0', '10', '100', '110', '1000', '1010', '1100', '1110', '10000', '10010']
Shifting bits by 1   for bits idx: []
Shifting bits by 2   for bits idx: [1, 3, 5, 7, 9]
Shifting bits by 4   for bits idx: [2, 3, 6, 7]
Shifting bits by 8   for bits idx: [4, 5, 6, 7]
Shifting bits by 16  for bits idx: [8, 9]
BitPositions: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Shifted bef.:   0000 0000 0000 0000 0000 0011 0000 0000 hex: 0x300
Shifted:        0000 0011 0000 0000 0000 0000 0000 0000 hex: 0x3000000
NonShifted:     0000 0000 0000 0000 0000 0000 1111 1111 hex: 0xff
Bitmask is now: 0000 0011 0000 0000 0000 0000 1111 1111 hex: 0x30000ff

Shifted bef.:   0000 0000 0000 0000 0000 0000 1111 0000 hex: 0xf0
Shifted:        0000 0000 0000 0000 1111 0000 0000 0000 hex: 0xf000
NonShifted:     0000 0011 0000 0000 0000 0000 0000 1111 hex: 0x300000f
Bitmask is now: 0000 0011 0000 0000 1111 0000 0000 1111 hex: 0x300f00f

Shifted bef.:   0000 0000 0000 0000 1100 0000 0000 1100 hex: 0xc00c
Shifted:        0000 0000 0000 1100 0000 0000 1100 0000 hex: 0xc00c0
NonShifted:     0000 0011 0000 0000 0011 0000 0000 0011 hex: 0x3003003
Bitmask is now: 0000 0011 0000 1100 0011 0000 1100 0011 hex: 0x30c30c3

Shifted bef.:   0000 0010 0000 1000 0010 0000 1000 0010 hex: 0x2082082
Shifted:        0000 1000 0010 0000 1000 0010 0000 1000 hex: 0x8208208
NonShifted:     0000 0001 0000 0100 0001 0000 0100 0001 hex: 0x1041041
Bitmask is now: 0000 1001 0010 0100 1001 0010 0100 1001 hex: 0x9249249

x &= 0x3ff
x = (x | x << 16) & 0x30000ff   <<< THIS IS THE MASK for shifting 16 (for bit 8 and 9)
x = (x | x << 8) & 0x300f00f
x = (x | x << 4) & 0x30c30c3
x = (x | x << 2) & 0x9249249